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Abstract 

 

The method presented in this paper aims at furnishing a series of numerical values to approximate the matrix 

eigenvalues. The method is based on a statistical model that involves the first three central moments of the eigenvalue 

distribution, and it relies on the solution of a nonlinear system of equations that implements the moment-matching 

method and on a subsequent procedure of Monte Carlo simulations. The method is only applicable to real positive 

semidefinite matrices (PSD), and it is especially useful when other techniques lead to computational problems, e.g., 

when the matrices become too large to be processed or the required storage space is the cause of heavy limits to the 

computational process. 
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1 Introduction 

Matrix eigenvalue problems are present in a large number of scientific and engineering fields, including statistical data 

analysis, building design, vibration analysis, and electric networks. Most approaches use algebraic methods to solve 

eigenvalue problems, which may involve matrices of a general form or a particular form (e.g., symmetric matrices), and 

several software packages that can solve such problems are available; this type of software is readily useable to solve 

eigenvalue problems and works properly if the available computer memory is sufficient to store the matrix in question. 

Typically, this type of software returns all of the eigenvalues and eigenvectors.  

In some applications, the matrix becomes too large to be stored or processed (i.e., when the intermediate results need a 

large amount of extra storage space); in this case, special approaches must be considered, and these approaches are 

executed using dedicated procedures, for example, for large sparse matrices [1]. 

In many cases, the largest or smallest eigenvalue and/or the range between them provide valuable information. In other 

cases, for example, in least-squares problems, the need to evaluate the numerical rank of a matrix arises; this problem is 

not a straightforward computational problem and it can be affected by numerical questions. 

For this type of problem, techniques exist that are useable deterministically [1]; however, the present technique uses a 

different approach. This technique is based on a Monte Carlo procedure, which in general can provide results in 

applications where the system being studied is not stochastic, but nevertheless a stochastic algorithm is the most 

efficient, or the most accurate, or the only feasible method for studying the system. 

The method discussed in this paper is especially useful when the given problem involves large matrices. To demonstrate 

this method, we will use it on medium-size matrices (on the order of 2000 × 2000), even though the eigenvalues and 

eigenvectors of these matrices could be found directly on many desktop computers. 

The method aims at furnishing a series of values to approximate the matrix eigenvalues, and it can easily be 

implemented on large matrices; it is based on a statistical model that involves the first three central moments of the 

eigenvalue distribution, as applied in a Monte Carlo context. 

Eigenvalues are supposed to be organised in descending order (i.e., with respect to their rank), implementing an order 

statistics [2], and furthermore, their approximating values are assumed to conform to this assumption. The reasons for 

this assumption will be presented later. 

Finally, it is worthwhile to mention that this method is only applicable to real positive semidefinite matrices, although 

such matrices have many applications, e.g., considering the covariance matrices and one of their key applications, 

Principal Component Analysis (PCA). 
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2 Some facts of matrix theory 

The fact that the eigenvalues of an (n × n) matrix A are the roots of the n-th degree polynomial equation, det(A - λI) = 0, 

is well known.  

We now establish a connection among the central moments of the eigenvalue distribution and the traces of A, A2, …, Ak, 

…, which are the consecutive powers of A. This connection can be demonstrated in a variety of ways, for example, by 

recalling the following theorem [3], which is presented without a demonstration: 

 

Theorem 2.1:  If  λ1, λ2, …., λn are the eigenvalues (with the proper multiplicities) of an (n × n) matrix A and if g(x) is 

a scalar polynomial, then g(λ1), g(λ2), …, g(λn) are the eigenvalues of g(A). 

 
In particular, if A has the eigenvalues {λ1, λ2, …., λn}   Λ, then Ak, which represents the matrix A raised to the power k, 

has the eigenvalues {λ1
k, λ2

k, …., λn
k}   Λk. 

It follows that 

 

trace(A)  =  λi        Λm  =  λi /n = trace(A)/n; 

trace(A2) =  λi
2         

Λ
   = 1/n   (λi - Λm)2 = trace(A2)/n – [trace(A)/n]2      (1) 

trace(A3) =  λi
3        SkΛ =  (λi -Λm)3

/ (n   
Λ
 ) = {[trace(A3) - 3Λm trace(A2)]/n + 2Λm

3}/ 
Λ
  

 

where Λm, 2
Λ, and SkΛ represent the sample mean value, the sample variance and the sample skewness of the 

eigenvalue distribution, respectively. 

Although higher moments are obtainable, we will limit ourselves to the first three moments, due to the application of 

our method to large matrices. 

In fact, it can easily be demonstrated that the first three moments are calculable with in-place procedures, that is, 

without the need to store any intermediate results in memory areas as large as the base matrix A. Indeed, the computing 

procedure requires only a small amount of extra storage space.  

The following pseudo-code justifies this assertion: 

 

Vr=zeros(1,1:n);  % A zeroed n-element row vector to contain the intermediate results 

tr2=0;   % The initial setting for trace(A2) 

tr3=0;    % The initial setting for trace(A3) 

for i=1:n   % A(i,1:n) represents the i-th row of A, A(1:n, j) represents the j-th column of A 

          for j=1:n 

Vr(j)= A(i,1:n)  A(1:n,j);  % dot product 

end 

tr2=tr2+Vr(i); 

tr3=tr3+Vr  A(1:n,i);  % dot product 

end 

 

Upon exiting the outerloop, the variables tr2 and tr3 will contain trace(A2) and trace(A3), respectively. 

In practical applications, it is of interest to estimate the largest eigenvalue that could arise. An iterative procedure called 

the power method is available, and it is one of the most widely used processes for the estimation of the largest 

eigenvalue of a real matrix A. As a result, the power method is also suitable for matrices of higher orders. For details, 

see for example [1, §4.1]. In general, the power method’s convergence is not assured to be fast. 

 

3 Statistical assumptions 

Fitting a distribution to a set of data is an important task in data analysis, for various reasons.  

In our case, the fitted distribution forms the basis of generating simulation scenarios, as dictated by the Monte Carlo 

method that is adopted here. 

In section 2, we mentioned the fact that a probability distribution can affect the eigenvalues, and we showed how to 

calculate the distribution’s sample central moments. In effect, this assumption is crucial in our paper: the eigenvalues 

are stochastic in nature and a probability distribution can represent them conveniently. 

With this assumption in mind, we now have to choose a proper law of eigenvalue distribution and find a method to 

identify this distribution’s free parameters based on the data we possess, namely, the first three sample moments 

assigned by the relations reported in (1).  
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In general, a data sample is available and a fitting can be conducted on it in a variety of ways. Among all of these 

methods, we mention the moment matching method, which dates back at least to K. Pearson, in the late 1800’s. This 

method proceeds by prescribing that a fixed number of sample (central) moments must match the moments of the 

theoretical distribution. The quality of the fitted distribution can be affected to some degree because even if the fixed 

number of moments is matched exactly, one cannot be assured that the resulting theoretical distribution will perfectly 

match the empirical distribution. In general, this method is recognised to be inferior to other approaches, especially the 

maximum likelihood method. However, in our case, this alternative approach is not applicable because some terms of 

the log likelihood function are out of reach.  

Thus, despite the possible drawbacks, the moment matching method suits our context well.  

In effect, in our method, we will pursue a match among the three sample moments that are generated by relations (1) 

and the first three moments of the theoretical distribution law, which we now introduce. 

Various possible distributions to represent observed data have been defined, and among these distributions, we propose 

using the powered gamma distribution (or Kritskii-Menkel distribution) because it is extremely useful for representing 

observations on a continuous positive random variable [4, §11.11]. In fact, the possession of three adjustable parameters 

gives this family a large degree of flexibility that may make a satisfactory fit possible. 

Let Gamma(, ) be a standard gamma variate with shape parameter  > 0 and scale parameter  > 0 [4, §11.3]. The 

powered gamma distribution, which has a power parameter  > 0, is the distribution of the variate 

 

 Z(, , ) = [Gamma(, )],   Z ≥ 0        (2) 

 

and this distribution is the distribution of a standard gamma variate raised to the power . 

It can be demonstrated [4, §11.11] that the variate’s first three central moments are given by 

 

 Zm    = E{Z(, , )} =  [( + ) / ()] =  G(,) 

              Z
2  = var{Z(, , )} = 2

 [( + 2) / () - G2(,)] = 2
 [G(,2) - G2(,)]   (3) 

 SkZ = skew{Z(, , )} = [G(,3) + 2 G3(,) -3 G(,)  G(,2)] / Z
3, 

 

where () is the gamma function and G(, k) = ( + k) / (). Furthermore, Zm represents the mean value, Z
2 

represents the variance and SkZ represents the skewness of the powered gamma distribution with parameters , , and . 

 

4 Computational details 

Because we have defined the principal ingredients of the method, we are now ready to detail its computational process. 

 

4.1 Matching the first three central moments 
 

As explained above, in our case, the moment matching method has to find values for the free distributional parameters 

of (2) because of the goal of making the three sample moments (1) as close as possible to being equal to the 

corresponding theoretical moments (3). In other words, in our situation, we have to find a solution, even approximate 

and that is as accurate as possible, to the following highly nonlinear system of three equations in three unknown values 

, , and : 

 

 Zm(, , )  = Λm; 

 2
Z(, , ) = 2

Λ;            (4) 

 SkZ(, , ) = SkΛ, 

 

where Λm,  
2
Λ and SkΛ are calculated using both the traces of A and the powers of A. 

The nonlinearity of the problem indicates that an iterative search for the solution may be ideal, and many methods and 

software resources exist that use iterative searches; thus, they are able to address the problem.  

In our analyses, we used the Matlab routine fsolve, which demonstrated an adequate level of ability to find suitable 

solutions; in any case, the constraints of positivity on all three solving parameters must be taken into account. 

How to utilise the solution (s, s, s) to system (4) (once it has been found) will be explained in the next subsection. 
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4.2 Monte Carlo simulations 

 
Monte Carlo simulations are stochastic techniques in the sense that they are based on the use of random numbers and 

statistics to analyse problems.  

Depending on the number of uncertainties, a Monte Carlo simulation could involve thousands or tens of thousands of 

recalculations before it is complete.  

Our method uses this technique, because the three parameters s, s, and s  of the chosen powered gamma distribution 

have been identified as a solution to the nonlinear system (4). 

The Monte Carlo simulation we propose is developed in consecutive steps. We summarise it thusly: 

- a repeated extraction of gamma random samples of size n (where n is the order of A), with shape parameter s and 

scale parameter s, is performed. For example, this task can be carried out by calls to the Matlab routine gamrnd; 

- every sample of size n is raised to the power s, as prescribed by (2). In this way, we obtain a powered gamma 

random sample of size n; 

- the above samples are then reorganised in descending order, which complies with the assumption of order statistics; 

- finally, an index-by-index average of all of the ordered samples is performed, and these averages furnish the desired 

approximating values. 

Therefore, the approximation for the i-th eigenvalue is obtained as an average of the i-th order statistics, that is, as an 

average of the i-th value of all of the ordered powered gamma random samples of size n. 

In our work, the number of extractions of size n to consider was likewise fixed at n, the order of A. 

The computational procedure is simple to perform, and furthermore, it requires only a small amount of extra storage 

space. If this space is available, then the simulation process can be implemented with an in-place procedure. 

The rationale behind the key adoption of order statistics is that, in the absence of ordering, the Monte Carlo procedure 

would produce uniform averages because of randomness in the sample extraction. Therefore, ordering readdresses the 

results of averaging, and in effect, our procedure acts as a generator of realisations of random samples of ordered 

eigenvalues. 

 

5 Results 

In this section, we will present the results of our method as applied to arbitrary matrices, which were obtained by 

repeated applications of a uniformly distributed pseudorandom generator. The first three of these matrices have a 

common origin because they were derived from a random sample containing 2000 points xi   R2 located inside a square 

with sides of length 5 that was at the origin O.  

Let us consider the following rule defined on the points xi and producing results A(i, k)  R+: 

 

 A(i, k) = exp(-  ||xi – xk||
2)   (i, k = 1, 2, …., 2000)                     (5) 

 

This rule generates matrices A (2000× 2000) that are defined by means of a kernel function (more precisely, a radial 

basis function, or RBF) [5], where  is a positive parameter that controls the RBF radius. As a result, the matrices A are 

symmetric and positive semidefinite for any value of  [5]. Furthermore, by varying this parameter, a variety of matrices 

may be obtained, and all of them have real positive or null eigenvalues, hence, they are assimilable to covariance 

matrices.  

The initial three matrices we analyse pertain to the values  = 10,  = 1, and  = 0.1, and they will be denoted by A10, A1, 

A0.1, respectively. 

Fig.1 and fig. 2, which pertain to the matrices A10 and A1, illustrate the results of our method: we obtained good levels 

of agreement and overlapping between the ordered eigenvalues (the blue profile) and the corresponding approximating 

curve (the red profile). In addition, fig. 1 shows the entire overlapped population of 2000 ordered random powered 

gamma samples (the green band) of our simulation, but fig. 2 has a limited representation of only 500 eigenvalues; the 

remaining eigenvalues are graphically indistinguishable from zero. 

Eigenvalues were invariably calculated by the double-precision Matlab routine eig. 

Table 1 helps us to achieve a better understanding of this process. 

In table 1, we report the following data: the solution (s, s, s) to (4) that was furnished by the routine fsolve, the values 

Λm, 2
Λ and SkΛ, which were calculated by means of the traces, see (1), and their counterparts Zm, 2

Z and SkZ, which 

were obtained by means of (3) when the solution (s, s, s) was substituted there. Moreover, λmax represents the largest 

eigenvalue and AC(1) represents the first value of the approximating curve, whose deviation from λmax can constitute a 

sort of index of quality of the approximation relative to the region with the largest eigenvalues. 
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                   Fig. 1: The results for the matrix A10                                   Fig. 2: The results for the matrix A1 

 
 

Table 1: The characteristic values of the matrices A10, A1 and A0.1 

 s s    s Λm Zm   2
Λ  2

Z  SkΛ SkZ  λmax AC(1) 

A10 0.0572 443.229 0.3268 1 1.00 3.06 3.06 2.35 2.35 10.01 11.34 

A1 0.0038 4.27e+8 0.2065 1 1.01 28.93 28.93 7.32 7.32 61.78 66.76 

A0.1 9.35e-4 3.24e+7 0.3525 1 1.05 236.95 236.97 21.3 21.6 453.75 401.47 

 
Fig. 3 presents the approximating curve relative to the matrix A0.1. To show the details more clearly, in the graph on the 

left, the representation is limited to the first 200 eigenvalues, and in the graph on the right, the representation is limited to 

the first 20 eigenvalues. 

A general consideration can be portrayed: situations where the decay is fast and many eigenvalues tend to rapidly become 

smaller in their ordered sequence are harder to resolve because the solution to moment matching tends to assume extreme 

values to justify this large variation profile (for example, see the components s and s in the case corresponding to A0.1, 

which can be found on the third row of table 1).  

In these situations, proper numerical procedures are to be employed. For example, extended precision may be required 

when calculating the values of the gamma function () because it can rapidly tend to large values (in the limit to infinity 

when →0), which negatively affects the numerical procedure. 

 

 
         Fig. 3: The results for the matrix A0.1 (the graph on the left is limited to 200 eigenvalues and the graph on the right is limited to 20 eigenvalues) 

 
The fourth analysed situation, which has a different origin, refers to a generic matrix B that is derived from a similarity 

transformation; this transformation involves a diagonal matrix D with uniform random entries in the range (0,100), an 

arbitrary random matrix P and its inverse P-1: 
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 B = P
-1 
 D  P;                (6) 

 

Although B is not symmetric, it possesses positive eigenvalues (the same diagonal elements of D); as usual, the order is 

fixed to (2000×2000). 

In this case (see fig. 4), we note substantial differences in the first eigenvalues, which often resulted in our analyses 

being more difficult to perform.  

Analogous effect is known in close contexts [6, §1] when n (the sample size) and p (the dimensions of the defining 

space) are both large, n/p → θ, θ finite (the so-called large n large p case). 

Table 2 reports the numerical results that pertain to B (the first row), with the same meanings as table 1. 

Apart from the values of skewness, namely SkΛ and SkZ, the other two moments Λm and 2
Λ are in good agreement with 

their counterparts Zm and 2
Z. In table 2, we also note the following large deviation between the largest eigenvalue λmax 

of B and the first value of the approximating curve AC(1): 99.94 versus 139.33 (+40.4%). This deviation is a result of 

the poor representation of the first eigenvalues. 

In effect, the good practice of invariably estimating the largest eigenvalue by means of the power method (see section 2) 

is recommendable. At the cost of an acceptable amount of extra computing time, this estimation furnishes a value to 

compare with AC(1), and if the deviation is large, a local reconsideration or correction of the approximating curve can 

be attempted. 

 
Table 2: The characteristic values for the matrices B and C 

     s      s    s   Λm    Zm    2
Λ    2

Z SkΛ SkZ λmax  AC(1) 

B 0.2643 6.40e+8 0.2246 50.36 50.36 836.26 836.26 -0.04 0.28 99.94 139.33 

C 0.4430 7.29e+8 0.2196 60.11 60.11 609.50 609.50 -0.002 -0.002 94.97 132.34 

 
In our case, at the cost of 20 additional iterations, the power method yields the value of 94.95. When compared to the 

above value of AC(1), the noticeable deviation indicates that we should reconsider the leftmost region of the 

approximating curve. 

It is worthwhile to mention fig. 5, where the frequency distributions of the eigenvalues of B and of its approximating 

curve are presented. Whereas the former distribution shows in its domain a flat erratic profile (consequently, there is a 

low degree of departure from symmetry and a small skewness, see table 2), the latter distribution shows a unimodal 

profile, with a mode close to its mean value of Zm = 50.36, with positive skewness and with a regular structure that is 

derived from both statistical modeling and Monte Carlo averaging. In spite of these differences, the first two central 

moments are practically undistinguishable; see table 2. 

 

 
                              Fig. 4: The results for the matrix B                                Fig. 5: Frequency Distributions 

 

A final analysis that utilises another PSD matrix, denoted C and generated by the same rule (6), is presented in fig. 6 

and fig. 7. This analysis shows analogous results; the random eigenvalues were in the range (0, 100), they were 

clustered uniformly around three central values (30, 60, 90), and they were chosen as entries of the diagonal matrix D of 

(6). Interestingly, the first three moment results perfectly matched (see the second row of table 2), but the differences in 

figures 6 and 7 are noticeable. 
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It appears that power raising in our statistical model (2) is capable of explaining the nearly exponential decays of the 

ordered eigenvalues (see figs. 1 to 3). In contrast, linear or piecewise-linear profiles are represented on a smaller scale 

of approximation (see fig. 4 and fig. 6).  

 
Table 3: The RMSE relative to the five analyses 

    A10 A1     A0.1     B     C 

RMSE 0.0741 0.2248  2.0005 4.2757 7.7470 

    λmax  10.01  61.78  453.75   99.94   94.97 

 
Finally, to allow us a more quantitative interpretation of the obtained approximations, the RMSE (Root Mean Square 

Error) is considered; it is calculated in our analyses by means of its well-known definition: 

 

 RMSE =           λ
 
 λ 

                         

 

The RMSE furnishes an average measure of deviation of the true series of eigenvalues  λ   from the approximating 

series {λ 
 }. 

 
                          Fig. 6: The results for the matrix C                       Fig. 7: Frequency Distributions  

 
Table 3 shows the RMSE values; the second row reports the respective largest eigenvalues to have a term of 

comparison with this scale-dependent parameter. 

The first three cases show evidence of small deviations, and these deviations are small either absolutely or relatively. 

 

6 Conclusion 

A method to trace the approximating curve of PSD matrix eigenvalues was proposed. This method relies on the solution 

of a nonlinear system of equations that implements the moment-matching method to fit a powered gamma distribution, 

and we assume that this distribution is able to conveniently represent the eigenvalue distribution. The subsequent step of 

Monte Carlo simulations is very simple to perform, and it implements the approximation of the i-th eigenvalue as an 

average of the i-th order statistics, which are relative to repeated extractions of powered gamma random samples.  

The method is well suited to large matrices, when storage or numerical problems can arise in the course of attempts to 

calculate their spectra by algebraic procedures.  

In our case, the assumed statistical distribution, namely, the powered gamma distribution, depends on three parameters, 

and it complies with the property that the first three sample central moments are calculable by means of in-place 

procedures. Other distributions exist that, in principle, could produce suitable fitting because of their flexibility, e.g., the 

four-parameter generalised  distribution [7]. However, this alternative distribution excludes in-place procedures of 

computation because it requires more information, i.e., higher-order moments. 

The proposed method showed its validity in situations that involve random matrices that possess nearly exponential 

and/or well-behaved ordered eigenvalue profiles; when this method is applied to inappropriate situations, it still 

furnishes informative results, but on a smaller scale of approximation. 
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