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Abstract

The method presented in this paper aims at furnishing a series of numerical values to approximate the matrix
eigenvalues. The method is based on a statistical model that intodvéisst three central moments of the eigenvalue
distribution, and it relies on the solution of a nonlinear system of equations that implements the matodimg

method and on a subsequembcedureof Monte Carlo simulations. The method is only apgbie to real positive
semidefinite matrices (PSD), and it is especially useful when other techniques lead to computational problems, e.g.,
when the matrices become too large to be processed or the required storage thgacause dfeavy limits to the
computational process.
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1 Introduction

Matrix eigenvalugyroblems are present in a large number of scientific and engineering fields, including statistical data
analysis, building design, vibration analysis, and electric networks. Most approaches use algebraic methods to solve
eigenvalue problems, which may olve matrices of a general form or a particular form (e.g., symmetric matrices), and
several software packages that can solve such problems are av#ilabigpe of software is readily useable to solve
eigenvalue problems and works properly if the aldd computer memory is sufficient to store the matrix in question.
Typically, this type of software returns all of the eigenvalues and eigenvectors.

In some applications, the matrix becomes too large to be stored or processed (i.e., when the intezmddiateed a

large amount of extra storage space); in this case, special approaches must be considered, and these approaches ar
executed using dedicated procedufesexample, for large sparse matri§tls

In many cases, the largest or smallestreigkie and/or the range between them provide valuable information. In other
cases, for example, in leesjuares problems, the need to evaluate the numerical rank of a matrix arises; this problem is
not a straightforward computational problem and it caaffeeted by numerical questions.

For this type of problem, techniques exist that are useministically[1]; however, the present technique uses a
different approach. This technique is based on a Monte Carlo procedure, which in general canrgsaitiglén
applications where the system being studied is not stochastic, but nevertheless a stochastic algorithm is the most
efficient, or the most accurate, or the only feasible method for studying the system.

The method discussed in this papezspecially useful when the given problem involves large matrices. To demonstrate
this method, we will use it on mediusize matrices (on the order of 208@000), even though the eigenvalues and
eigenvectors of these matrices could be found directly avy mi@sktop computers.

The method aims at furnishing a series of values to approximate the matrix eigenvalues, and it can easily be
implemented on large matrices; it is based on a statistical model that involves the first three central moments of the
eigenalue distribution, as applied in a Monte Carlo context.

Eigenvalues are supposed to be organised in descending order (i.e., with respect to their rank), implementing an order
statistics [2], and furthermore, their approximating values are assumed toncaafthis assumption. The reasons for

this assumption will be presented later.

Finally, it is worthwhile to mention that this method is only applicable to real positive semidefinite matrices, although
such matrices have many applications, e.g., considénegovariance matrices and one of their key applications,
Principal Component Analysis (PCA).
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2 Some facts of matrix heory

The fact that the eigenvalues of arx(m) matrixA are the roots of the-th degree polynomial equation, det{a-1 ) = 0,
is well known.
We now establish a connection among the central moroétite eigenvalue distribution and the tracedpfA?, A,

€, which are t he AcThiseoanedidnican be dpnuomstated in a fariety of ways, for example, by
recalling thefollowing theorem [3], which is presented without a demonstration:

Theorem2.1: If &, , & é,are the-eigenvalues (with the proper multiplicities) of an (n x n) matrand ifg(x) is
a scalar polynomial, theg ()&, .) g, ( o€,) aredhge eigerslues ofg(A).

In particular,ifAhas t he ei genélKlsuse stAhiekich represents the matdxraised to the power k,

has the ei<gka¢dliKkees {a
It follows that

trace@’) =Sa* —» (_=1UnqS( j@sm)’=tracef’)/ni [trace@)/n]’ (1)

trace@) =Sa8 —» Sm =Sa/n=tracefd)/n; }
trace@’) =Sa® —» Sk =S( 8w (n10, ) ={[trace(A®) - 3 g trace@?)]/n+2 §’}H/i_

wher.g szss, and Sk represent the sample mean value, shenplevariance and theampleskewness of the
eigenvalue distribution, respectively.

Although higher moments are obtainable, we will limit ourselves to the first three moments, due to the application of
our method to large matrices.

In fact, it can easilype demonstrated that the first three moments are calculable wiplace procedures, that is,
without the need to store any intermediate results in memory areas as large as the ba&e Imaexxi, the computing
procedure requires onlysaall amount bextra storage space.

The following pseudaode justifies this assertion:

Vr=zeros(1,1:n); % A zeroed felement row vector to contain the intermediate results
tr2=0; % The initial setting for tracé(’)
tr3=0; % The initial setting for tracé(®)
fori=1:n % A(i,1:n) represents theth row of A, A(1:n, j) represents theth column ofA
for j=1:n
Vr(j)= A(i,1:n) 1A(L:n,)); % dot product
end
tr2=tr2+Vr(i);
tr3=tr3+Vr 1A(1:n,i); % dot product
end

Upon exiting the outerlogphe variables tr2 and tr3 will contain tra&é&(and tracek?), respectively.

In practical applications, it is of interest to estimate the largest eigenvalue that could arise. An iterative procediure call

the power methods available, and it is one dhe most widely used processes for the estimation of the largest
eigenvalue of a real matrik. As a result, the power method is also suitable for matrices of higher orders. For detalils,
see for example [1, A4.1]. | nisngtasswed tobefast he power met ho

3 Statistical assumptions

Fitting a distribution to a set of data is an important task in data analysis, for various reasons.

In our case, the fitted distribution forms the basis of generating simulation scenarios, as byctaed/lonte Carlo

method that is adopted here.

In section 2, we mentioned the fact that a probability distribution can affect the eigenvalues, and we showed how to
calculate the distributionds sampl e ineunpapea the egenvauest s . I
are stochastic in nature and a probability distribution can represent them conveniently.

With this assumption in mind, we now have to choose a proper law of eigenvalue distribution and find a method to
identify this distibub né6s free parameters based on the data we p
assigned by the relations reported in (1).
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In general, a data sample is available and a fitting can be conducted on it in a variety of ways. Among all of these
methals, we mention thenoment matchingnethod, which dates back at least to K. Pearsom, t he |Thise 180
method proceeds by prescribing that a fixed number of sample (central) moments must match the moments of the
theoretical distribution. The qualiyf the fitted distribution can be affected to some degree because even if the fixed
number of moments is matched exactly, one cannot be assured that the resulting theoretical distribution will perfectly
match the empirical distribution. In general, thistinoel is recognised to be inferior to other approaches, especially the
maximum likelihood method. However, in our case, this alternative approach is not applicable because some terms of
the log likelihood function are out of reach.

Thus, despite the possidrawbacks, the moment matching method suits our context well.

In effect, in our methodye will pursue a match among the three sample moments that are generated by relations (1)
and the first three moments of the theoretical distribution law, whiamowentroduce.

Various possible distributions to represent observed data have been defined, and among these distributions, we propose
using thepowered gamma distributiofor Kritskii-Menkel distribution) because it is extremely useful for representing
observations on a continuous positive randeaniable [4, 811.11]. In fact, the possession of three adjustable parameters
gives this family a large degree of flexibility that may make a satisfactory fit possible.

Let Gammag, b) be a standard gamma variati¢gh shape parameter > 0 and scale parametbr> 0 [4, §11.3]. The

powered gamma distribution, which has a power parametdl, is the distribution of the variate

Z(a, b, n) = [Gamma4, b)]", z 0 o )
and this distribution is the distriban of a standard gamma variate raised to the pawer
It can be demonstrated [4, A11.11] that the variateos
Zn, =E{Z(a,b,n)}=Db"[Ga +n)/Ga)] =b"1G(a,n)
sz =var{Z(a, b, n)} = b*1[Ga + 2n) / Ga) - G*(a,n)] = b1 [G(a,2n) - G¥a,n)] (3)
Sk, = skew{Z(a, b, n)} = [G(a,3n) + 2 G(a,n) -3 G@,n) 1G(@,2n)] / s;°,

whereq) is the gamma function and &kn) = Ga + kn) / G(a). Furthermore, Zrepresents the mean valise?
represents the variance and, 8¥presents the skewness of the powered gamma distribution with paraaméteaadn.

4  Computational details
Because we have defined the principal ingredients of the method, we are now ready to detail its compubatssal

4.1 Matching the first three central moments

As explained above, in our case, the moment matching method has to find values for the free distributional parameters
of (2) because of the goal of making the three sample moments (1) as close as possible to being equal to the
corresponding theoretical mamts (3). In other words, in our situation, we have to &irsblution even approximate

andthat is as accurate as possijlitethe following highly nonlinear system of three equations in three unknown values

a, b, andn:

s%(a, b, n) =s%;
Skz(a, b, n) = Sk;,

Zn(@,b,n) =g m }
(4)

wh ernes 25 and Sk are calculated using both the trace#\aind the powers k.

The nonlinearity of the problem indicates that an iterative search for the solution may be ideal, and many methods and
software resources exist that use iterative searches; thus, they are able to address the problem.

In our analyses, we used the Matlalitioe fsolve which demonstrated an adequate level of ability to find suitable
solutions; in any case, the constraintpaditivity on all three solving parameters must be taken into account.

How to utilise the solutiona, bs, ng) to system (4) (once tas been found) will be explained in the next subsection.
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4.2 Monte Carlo simulations

Monte Carlo simulations are stochastic techniques in the sense that they are based on the use of random numbers and
statistics to analyse problems.
Depending on thaumber of uncertainties, a Monte Carlo simulation could involve thousands or tens of thousands of
recalculations before it is complete.
Our method uses this technique, because the three parametgrsandns of the chosen powered gamma distribution
have been identified as a solution to the nonlinear system (4).
The Monte Carlo simulation we propose is developed in consecutive steps. We summarise it thusly:
- arepeated extraction of gamma random samples of gizhere n is the order &), with shape parametersand
scale parametdy, is performed. For example, this task can be carried out by calls to the Matlab gantime;
- every sample of size n is raised to the pongras prescribed by (2). In this waye obtain a powered gamma
random sample of size n;
- the above samples are then reorganised in descending order, which complies with the assumption of order statistics;
- finally, an indexby-index average of all of the ordered samples is performed, andath@msges furnish the desired
approximating values.
Therefore, the approximation for the¢hi eigenvalue is obtained as an average of-theorder statistics, that is, as an
average of theth value of all of the ordered powered gamma random sampéizeat.
In our work, the number of extractions of size n to consider was likewise fixed at n, the dkder of
The computational procedure is simple to perform, and furthermore, it requires only a small amount of extra storage
space. If this space is avdila, then the simulation process can be implemented withglade procedure.
The rationale behind the key adoption of order statistics is that, in the absence of ordering, the Monte Carlo procedure
would produce uniform averages because of randomneke sample extraction. Therefore, ordering readdresses the
results of averaging, and in effect, our procedure acts as a generator of realisations of random samples of ordered
eigenvalues.

5 Results

In this section, we will present the results of our methedapplied to arbitrary matrices, which were obtained by
repeated applications of a uniformly distributed pseudorandom generator. The first three of these matrices have a
common origin because they were derived from a random sample containing 2008; poRftecated inside a square

with sides of length 5 that was at the origin O.

Let us consider thillowing rule defined on the points and producing results A(i, 19 R™:

A, k) = expt gl i xdP) (i, k =1, 2, é., 2000) 5)

This rule generates matricds(2000x 2000) that are defined by means of a kernel function (more precisely, a radial
basis function, or RBF) [5], whergis a positive parameter that controls the RBF radius. As a result, the mAtdces
symmetric and positive semidefinite for any valug {§]. Furthermore, by varying this parameter, a variety of matrices

may be obtained, and all of them have real positive or null eigenvalues, hence, they are assimilable to covariance
matrices.

Theinitial three matrices we analyse pertain to the valire40,9= 1, andg= 0.1, and they will be denoted By, A1,

Ao, respectively.

Fig.1 and fig. 2, which pertain the matricedA;q andA;, illustratethe results of our method: we obtained good levels

of agreement and overlapping between the ordered eigenvalues (the blue profile) and the corresponding approximating
curve (the red profile). In addition, fig. 1 shows the entire overlappedigtam of 2000orderedrandom powered

gamma samples (the green band) of our simulation, but fig. 2 has a limited representation of only 500 eigenvalues; the
remaining eigenvalues are graphically indistinguish&bl® zero

Eigenvalues were invariably callatedby the doubleprecision Matlab routineig.

Table 1 helps us to achieve a better understanding of this process.

In table 1, we report the following data: the solutfag bs, ng) to (4) that wasfurnished by the routingsolve the values

S my 52S and Sk, which were calculated by means of the traseg (1), and their counterpafg, s?,and Sk, which

were obtained by means of (3) when the soluanbs, n) was substituted there. Moreovey,.x represents the largest
eigenvalueand AC(1) represents the firgtal ue of t he approxi mat i jgan coostituteea, wh
sort of index of quality of the approximation relative to the region with the largest eigenvalues
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Fig. 1: The resilts for the matriXA o Fig. 2: The results for the matri&,

Table 1:The characteristic values of the matriégs, A; andAo 1
as bs Ns  Sm Zm s% s%, Sk, Sk;  @max  AC(1)

Ao 0.0572 443229 03268 1 1.00 3.06 3.06 235 235 10.01 11.34
A 0.0038 4.27e+8 0.2065 1 101 2893 2893 732 732 6178 66.76
Aoa  9.35e4 3.24e+7 0.3525 1 1.05 236.95 236.97 21.3 21.6 453.75 401.47

Fig. 3 presents the approximating curve relative to the matrix To show the details more clearly, in the graph on the
left, the representation is limited to the first 200 eigenvalues, and in the graph on the right, the representatiartds limite

the first 20 eigenvalues.
A general consideration can be portrayed: situations where the decay is fast and many eigenvalues tend to rapidly becom

smaller in their ordered sequence are harder to resolve because the solution to moment matchirapssemas éxtreme
values to justify this large variation profile (for example, see the compoagatgibsin the case corresponding A 1,

which can be found on the third row of table 1).
In these situations, proper numerical procedures are to be emipleyeexample, extended precision may be required

when calculating the values of the gamma func@m) because it can rapidly tend to large values (in the limit to infinity
whenaY0), which negatively affects the numerical procedu

Fig. 3: The results for the matri&o; (the graph on the left is limited to 200 eigenvalues and the graph on the right is limited to 20 eigenvalues)

The fourth analysed situation, which has a different origin, refers to a generic Bidéiat is derived from a similarity
transformation; this transformation involves a diagonal mad¥riwith uniform random entries in the range (0,100), an

arbitrary random matri® and its invers@™:



