Using Adomian Decomposition Method for Solving Vector-Host
Model

Ibrahim M. ELmojtaba*
College of Sciences, Sultan Qaboos University

P.O.Box 50, Muscat, Oman

Faculty of Mathematical Sciences, University of Khartoum

P.O.Box 321, Khartoum, Sudan

Abstract

In this paper, we use Adomian decomposition method (ADM) for solving vector-host model by using
the alternate algorithm suggested by Biazar et. al [4]. Some of the first terms were generated and
plotted against time and compared our results with the regular Runge-Kutta numerical methods by
using Matlab ode45 function.
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1 Introduction

The vector-host model is a mathematical model (framework) for the spread of a disease that transmits
from human to another human throw another carrier (vector). To formulate this model we consider the
dynamics of the disease into two different populations, human population and vector population. We
assumed that the human population is divided into three different subgroups, susceptible s (t), infected
(and infectious) i5(t) and recovered r,(t), and the vector population into two subgroups susceptible
sy(t) and infected i,(t). It is assumed that susceptible individuals acquire infection following contacts
with infected vectors at a per capita rate abi,(t), where a is the per capita biting rate of vectors on
humans, and b is the transmission probability per bite per human (as the case for malaria, [6, 8]). The
per capita biting rate of vectors a is equal to the number of bites received per human from vectors due

to conservation of bites mechanism [5, 7]. Infected humans recover and acquire permanent immunity
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at an average rate 8. Susceptible vectors are acquire leishmaniasis infection following contacts with
infected human at an average rate equal to aciy(t), where a is the per capita biting rate, and c is the
transmission probability for vector infection. It is also assumed that there is no demographic effects

on the model. Then our model is given by

s, = —abspiy

Z;L = ab Sh ’iv — B ih

v, = Bin (1)
s; = —acSsyip

1;1 = acsyip

with initial conditions:

sp(0) = N1, ip(0) = Na,  1(0) = N3,  s4(0) = Ny, iy(0) = Ns.

2 Solving system (1) by Adomian decomposition
method (ADM)

Adomian decomposition method (ADM) (see [1, 2]), considers sy, ip,h, Sy and i, as the sums of

the following series:
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By applying inverse of the operator —;*, which is the integration operator fg (.)dt to each equation in

the system (1) we have
sn(t) = sn(t=0) —ab/ot sn(t) in(t) dt
in(t) = inlt=0) +ab/0t (sn(t) in(t) — Bin(t)) dt
() = rh(t:0)+,6’/0tih(t) at 2)

soll) = sv(t:O)—ac/O solt) in(t) dt

() = iv(t—())—i—ac/o so(t) in(t) dt



Using the alternate method for computing Adomian polynomials suggested by Biazar et. al [4], and

substituting the initial conditions, we would have the following scheme
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3 Convergence of the method

Since after the first step, applying the inverse operator fg (.)dt, we drive a system of Volterra

integral equations of second kind, and the convergence of these systems is discussed in [3].

4 Numerical simulation and discussion

In this section we give numerical simulation for our model using (ADM) and the regular
Runge-Kutta numerical method by applying Matlab® odeas function, and then we compare
between the results.

The parameters values used are in Table 1.

parameter | parameter description value
N, Initial value of population sj(t), susceptible individuals | 100
Ny Initial value of population i,(t), infected individuals 6
Ns Initial value of population rj(t), recovered individuals 1
Ny Initial value of population s, (t), susceptible vectors 80
N5 Initial value of population i,(t), infected vectors 12
a Biting rate of vectors 0.01
b Progression rate of the disease in the vector 0.2
c Progression rate of the disease in human 0.2
B Human recovery rate 0.3

Table 1: Parameter values for the model simulation

We calculate three and four terms approximations for the variables are calculated and presented
below.

Three terms approximation:

s = 100 —2.4¢ — 0.0672¢> - 0.0007 >
i = 6-0.6¢—0.02282+0.003¢°

r? = 141.8t+0.09¢ - 0.0023¢°
s$) = 80—0.96¢— 0.0422¢> +0.0018
i) = 124096t +0.0422¢2 — 0.0018 >



Four terms approximation:

s = 100 —2.4¢ — 0.0672¢% — 0.0007 £* + 0.0002 ¢*

i = 6-0.6t—0.0228¢%+0.003£> — 0.0004 *
P = 14 1.8+ 0,092 — 0.0023 % + 0.0002 ¢*
sV = 80— 0.96¢ — 0.0422¢2 4 0.0018 > — 0.0001 #*

i = 124096+ 0.0422¢% — 0.0018¢* 4 0.0001 £*
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Figure 1: Simulation results using three terms approximation

We noticed that the three terms approximation of Adomian decomposition method is very similar
to the simulation results generated using Matlab® 0deas function, which is reasonable compared to
reality because it is clear that the number of susceptible (humans and vectors) decrease as the
number of infected (humans and vectors) increase, and the number of recovered humans increases, as
seen from Figures 1,3. However, as seen from Figure 2, using four terms approximation we found
that the number of susceptible humans decrease first and then increase again, which coincide with
reality, and this case needs further investigation, and it may happens due to the use of alternate

method for computing Adomian polynomials.



100

— S
90 i h|
“h
o
80 — _Sv b
|
c v
0 /
g 10r / b
2
g /
& 60F 1
5
]
B )
@ 50t b
2 /
c
< /
P4
40t / -
/ :
30 / b
,///
20t ]
o ! ! ! ! !
0 5 10 15 20 25 30

Time (t)

Figure 2: Simulation results using four terms approximation
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Figure 3: Simulation results using ode45
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