
International Journal of Applied Mathematical Research, 5 (4) (2016) 187-191

International Journal of Applied Mathematical Research
Website: www.sciencepubco.com/index.php/IJAMR

doi: 10.14419/ijamr.v5i4.6174
Research paper

Solving linear two-dimensional Fredholm integral equations
system by triangular functions

Elias Hengamian Asl1 and Jafar Saberi-Nadjafi 1*

1Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
*Corresponding author E-mail: najafi141@gmail.com

Abstract

In this paper, we intend to offer a numerical method to solve linear two-dimensional Fredholm integral equations system of the second
kind. This method converts the given two-dimensional Fredholm integral equations system into a linear system of algebraic equations by
using two-dimensional triangular functions. Moreover, we prove the convergence of the method. Finally the proposed method is illustrated
by two examples and also results are compared with the exact solution by using computer simulations.
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1. Introduction

It is well known that the differential and integral equations are one
of the important parts of the analysis theory that play major role
in numerical analysis. There are many numerical methods which
have been focusing on the solution of integral equations. For exam-
ple, Tricomi, in his book [11] , introduced the classical method of
successive approximations for nonlinear integral equations. Varia-
tional iteration method [10] was effective and convenient for solv-
ing integral equations. Some numerical methods have been inves-
tigated to solve linear Fredholm integral equations of the second
kind in two-dimensional space [12]. The set of triangular orthog-
onal functions (TFs) has been presented and applied to analysis of
dynamical systems. These functions was first treated by Deb et al
[5, 6]. Recently, introduced triangular orthogonal functions have
been applied for solving Volterra Fredholm integral equation and
integral equation system by Babolian et al. [2, 4] and Almasieh et
al. [1]. Maleknejad et al. [8] have used two-dimensional triangular
functions for solving nonlinear class of mixed Volterra Fredholm
integral equations. Also, Mirzaee et al. [9] have used triangular
functions for solving the two-dimensional fuzzy Fredholm integral
equations of the second kind and Hengamian Asl [7] have used tri-
angular functions for solving the one-dimensional fuzzy Fredholm
integral equations system.
The aim of this paper is to apply the two-dimensional triangular
functions (2D-TFs) for the linear two-dimensional Fredholm inte-
gral equations system of the second kind (2D-FIES-2). We show
that, the proposed method is well performs for linear 2D-FIES-2.
This paper is organized as follows. Review of triangular functions
and their properties which will be used later, is briefly provided in
Section 2. Section 3 presents a numerical method for solving system
of two-dimensional Fredholm integral equations of the second kind.
Convergence analysis for the method is established in Section 4.

Finally, we illustrate in Section 5 some numerical examples to show
the efficiency and accuracy of the proposed method.

2. Review of triangular functions

2.1. One-dimensional triangular functions

Definition 2.1: [5]Two m-sets of one-dimensional triangular func-
tions (1D-TFs) are defined over the interval [0,T] as:

T 1i(t) =
{

1− t−ih
h , ih ≤ t < (i+1)h,

0, o.w,

T 2i(t) =
{ t−ih

h , ih ≤ t < (i+1)h,
0, o.w,

where i = 0,1, · · · ,m−1,h = T
m , with a positive integer value for m.

In this paper, it is assumed that T = 1. Also, we have:

∫ 1

0
T 1i(t)T 1 j(t)dt =

∫ 1

0
T 2i(t)T 2 j(t)dt =

{ h
3 , i = j,
0, i ̸= j,

(1)

∫ 1

0
T 1i(t)T 2 j(t)dt =

∫ 1

0
T 2i(t)T 1 j(t)dt =

{ h
6 , i = j,
0, i ̸= j.

(2)

2.2. Two-dimensional triangular functions

Definition 2.2: [5] An (m1×m2)-set of two-dimensional triangular
functions (2D-TFs) are defined on Ω = [0,1]× [0,1] as:
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T 1,1
i, j (s, t) =

 (1− s−ih1
h1

)(1− t− jh2
h2

),
ih1 ≤ s < (i+1)h1,
jh2 ≤ t < ( j+1)h2,

0, otherwise,

T 1,2
i, j (s, t) =

 (1− s−ih1
h1

)( t− jh2
h2

),
ih1 ≤ s < (i+1)h1,
jh2 ≤ t < ( j+1)h2,

0, otherwise,

T 2,1
i, j (s, t) =

 ( s−ih1
h1

)(1− t− jh2
h2

),
ih1 ≤ s < (i+1)h1,
jh2 ≤ t < ( j+1)h2,

0, otherwise,

T 2,2
i, j (s, t) =

 ( s−ih1
h1

)( t− jh2
h2

),
ih1 ≤ s < (i+1)h1,
jh2 ≤ t < ( j+1)h2,

0, otherwise,

where i = 0,1, · · · ,m1 − 1, j = 0,1, · · · ,m2 − 1,h1 = 1
m1

,h2 = 1
m2

.
m1 and m2 are arbitrary positive integers. It is clear that

T 1,1
i, j (s, t) = T 1i(s).T 1 j(t)

T 1,2
i, j (s, t) = T 1i(s).T 2 j(t),

T 2,1
i, j (s, t) = T 2i(s).T 1 j(t), (3)

T 2,2
i, j (s, t) = T 2i(s).T 2 j(t),

From Eq.s (1), (2) and (3) we have:∫ 1

0

∫ 1

0
T p1,q1

i1, j1 (s, t).T p2,q2
i2, j2 (s, t)dsdt = ∆p1,p2 δi1,i2 .∆q1,q2 δ j1, j2 , (4)

where δ denotes the Kronecker delta function and

∆α,β =

{ h
3 , α = β ∈ {1,2},
h
6 , α ̸= β .

On the other hand, if

T 11(s, t) = [T 1,1
0,0 (s, t), . . . ,T

1,1
0,m2−1,T

1,1
1,0 (s, t), . . . ,T

1,1
m1−1,m2−1(s, t)]

T ,

T 12(s, t) = [T 1,2
0,0 (s, t), . . . ,T

1,2
0,m2−1,T

1,2
1,0 (s, t), . . . ,T

1,2
m1−1,m2−1(s, t)]

T ,

T 21(s, t) = [T 2,1
0,0 (s, t), . . . ,T

2,1
0,m2−1,T

2,1
1,0 (s, t), . . . ,T

2,1
m1−1,m2−1(s, t)]

T ,

T 22(s, t) = [T 2,2
0,0 (s, t), . . . ,T

2,2
0,m2−1,T

2,2
1,0 (s, t), . . . ,T

2,2
m1−1,m2−1(s, t)]

T ,

then T (s, t), the 2D-TF vector, can be defined as follows

T (s, t) =


T 11(s, t)
T 12(s, t)
T 21(s, t)
T 22(s, t)


4m1m2×1

, (5)

by using eq. (4), We have:∫ 1

0

∫ 1

0
T 11T (s, t)T 11(s, t)dsdt =

h1

3
Im1×m1 ⊗

h2

3
Im2×m2 ,∫ 1

0

∫ 1

0
T 11T (s, t)T 12(s, t)dsdt =

h1

3
Im1×m1 ⊗

h2

6
Im2×m2 ,∫ 1

0

∫ 1

0
T 11T (s, t)T 21(s, t)dsdt =

h1

6
Im1×m1 ⊗

h2

3
Im2×m2 ,∫ 1

0

∫ 1

0
T 11T (s, t)T 22(s, t)dsdt =

h1

6
Im1×m1 ⊗

h2

6
Im2×m2 ,

where ⊗ denotes the Kronecker product defined for two arbitrary
matrices P and Q as

P⊗Q = Pi, jQ.

The same equations are implied for T 12(s, t),T 21(s, t) and
T 22(s, t), by similar computations. Hence, we can carry out the
following double integration of T (s, t):

∫ 1

0

∫ 1

0
T T (s, t)T (s, t)dsdt = D, (6)

where D is (4m1m2 ×4m1m2)-matrix as follows:

D =


h1
3 I1 ⊗ h2

3 I2
h1
3 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

3 I2
h1
6 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

3 I2
h1
3 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

6 I2
h1
6 I1 ⊗ h2

3 I2
h1
3 I1 ⊗ h2

6 I2
h1
3 I1 ⊗ h2

3 I2

 ,

(7)

where I1 = Im1×m1 and I2 = Im2×m2 [8].

2.3. Approximate the function with 2D-TFs

Let f (s, t) be a function of two variables on Ω = [0,1]× [0,1]. It
can be approximated with respect to 2D-TFs as follows:

f (s, t)≃
m1−1

∑
i=0

m2−1

∑
j=0

ci, jT
1,1

i, j (s, t)+
m1−1

∑
i=0

m2−1

∑
j=0

di, jT
1,2

i, j (s, t)

+
m1−1

∑
i=0

m2−1

∑
j=0

ei, jT
2,1

i, j (s, t)+
m1−1

∑
i=0

m2−1

∑
j=0

li, jT
2,2

i, j (s, t)

=F1T .T 11(s, t)+F2T .T 12(s, t)+F3T .T 21(s, t)+F4T .T 22(s, t)

=[F1T F2T F3T F4T ].


T 11(s, t)
T 12(s, t)
T 21(s, t)
T 22(s, t)

= FT .T (s, t)

or

f (s, t)≃ T T (s, t).F, (8)

where F1,F2,F3 and F4 can be computed by sampling the function
f (s, t) at grid points si and t j such that si = ih1 and t j = jh2, for
various values of i and j. So we have

(F1)k = ci, j = f (si, t j),

(F2)k = di, j = f (si, t j+1),

(F3)k = ei, j = f (si+1, t j),

(F4)k = li, j = f (si+1, t j+1),

where k = im2+ j and i = 0,1, · · · ,m1−1, j = 0,1, · · · ,m2−1. The
4m1m2-vector

F = [F1T F2T F3T F4T ]T (9)

is called the 2D-TF coefficient vector.
Let k(s, t,x,y) be a function of four variables on (Ω×Ω). It can be
approximated with respect to 2D-TFs as follows:

k(s, t,x,y)≃ T T (s, t).K.T (x,y), (10)

where T (s, t) and T (x,y) are 2D-TF vectors of dimension 4m1m2
and 4m3m4, respectively and K is a (4m1m2 ×4m3m4) 2D-TF coef-
ficient matrix. This matrix can be represented as

K =


K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

 , (11)
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where each block of K is an (m1m2 × m3m4)-matrix that can
be computed by sampling the function k(s, t,x,y) at grid points
(si1 , t j1 ,xi2 ,y j2) such that

si1 = i1h1, i1 = 0,1, . . . ,m1 −1, h1 =
1

m1

t j1 = j1h2, j1 = 0,1, . . . ,m2 −1, h2 =
1

m2

xi2 = i2h3, i2 = 0,1, . . . ,m3 −1, h3 =
1

m3

y j2 = j2h4, j2 = 0,1, . . . ,m4 −1, h4 =
1

m4
.

Choosing p = i1m2 + j1 and q = i2m4 + j2, we get

(K11)p,q = k(si1 , t j1 ,xi2 ,y j2),
(K12)p,q = k(si1 , t j1 ,xi2 ,y j2+1),
(K13)p,q = k(si1 , t j1 ,xi2+1,y j2),
(K14)p,q = k(si1 , t j1 ,xi2+1,y j2+1),

(K21)p,q = k(si1 , t j1+1,xi2 ,y j2),
(K22)p,q = k(si1 , t j1+1,xi2 ,y j2+1),
(K23)p,q = k(si1 , t j1+1,xi2+1,y j2),
(K24)p,q = k(si1 , t j1+1,xi2+1,y j2+1),

(K31)p,q = k(si1+1, t j1 ,xi2 ,y j2),
(K32)p,q = k(si1+1, t j1 ,xi2 ,y j2+1),
(K33)p,q = k(si1+1, t j1 ,xi2+1,y j2),
(K34)p,q = k(si1+1, t j1 ,xi2+1,y j2+1),

(K41)p,q = k(si1+1, t j1+1,xi2 ,y j2),
(K42)p,q = k(si1+1, t j1+1,xi2 ,y j2+1),
(K43)p,q = k(si1+1, t j1+1,xi2+1,y j2),
(K44)p,q = k(si1+1, t j1+1,xi2+1,y j2+1).

In this paper for convergence of the proposed method, we supposed
that m1 = m2 = m3 = m4 = m. More details about the properties of
the triangular functions are given in [5, 8].

3. Solving linear 2D-FIES-2

In this section, we present a 2D-TFs method to solve a linear 2D-
FIES-2. First consider the following two-dimensional Fredholm in-
tegral equations of the second kind (2D-FIE-2):

u(x,y) = g(x,y)+λ
∫ 1

0

∫ 1

0
k(x,y,s, t)u(s, t)dsdt,

where k(x,y,s, t) is an orbitary kernel function over (Ω×Ω) and
u(x,y) and g(x,y) are real valued functions and u(x,y) is unknown.
Now, we introduce the 2D-FIES-2 in the following form


u1(x,y) = g1(x,y)+∑n

j=1 λ1 j
∫ 1

0
∫ 1

0 k1 j(x,y,s, t)u j(s, t)dsdt,
u2(x,y) = g2(x,y)+∑n

j=1 λ2 j
∫ 1

0
∫ 1

0 k2 j(x,y,s, t)u j(s, t)dsdt,
...

un(x,y) = gn(x,y)+∑n
j=1 λn j

∫ 1
0
∫ 1

0 kn j(x,y,s, t)u j(s, t)dsdt,
(12)

where ki j(x,y,s, t), i, j = 1, . . . ,n, are an orbitary kernel function
over (Ω × Ω) and λi j ̸= 0 , i, j = 1, . . . ,n are real constants and
ui(x,y) and gi(x,y) are real valued functions for i = 1, · · · ,n and
u1(x,y),u2(x,y), . . . ,un(x,y) are the solutions to be determined.
For convenience, we consider the ith equation of system (12) as

ui(x,y) = gi(x,y)+
n

∑
j=1

λi j

∫ 1

0

∫ 1

0
ki j(x,y,s, t)u j(s, t)dsdt. (13)

For solving system (12) by using 2D-TFs, first let us expand ui(x,y),
gi(x,y) and ki j(x,y,s, t) by using Eqs. (8) and (10) as follows

ui(x,y)≃ T T (x,y).Ui,

gi(x,y)≃ T T (x,y).Gi, (14)

ki j(x,y,s, t)≃ T T (x,y).Ki j.T (s, t),

where Ui and Gi for i = 1, . . . ,n are similar to Eq. (9) as follows

Ui = [U1T
i U2T

i U3T
i U4T

i ]
T ,

Gi = [G1T
i G2T

i G3T
i G4T

i ]
T

and Ki j for i, j = 1, . . . ,n are similar to of Eq. (11) as follows

Ki j =


K11i j K12i j K13i j K14i j
K21i j K22i j K23i j K24i j
K31i j K32i j K33i j K34i j
K41i j K42i j K43i j K44i j

 .

Substituting the Eqs. (14) into Eq. (13), we get

T T (x,y)Ui ≃ T T (x,y)Gi

+
n

∑
j=1

λi j

∫ 1

0

∫ 1

0

(
T T (x,y)Ki jT (s, t)T T (s, t)U j

)
dsdt

= T T (x,y)Gi

+T T (x,y)
n

∑
j=1

λi jKi j

(∫ 1

0

∫ 1

0
T (s, t)T T (s, t)dsdt

)
U j.

(15)

Next, by substituting the Eq. (6) into Eq. (15), we can write

T T (x,y)Ui ≃ T T (x,y)Gi +T T (x,y)
n

∑
j=1

λi jKi jDU j

Thus we have

Ui = Gi +
n

∑
j=1

λi jKi jDU j

Then we get the following system

n

∑
j=1

(
∆i j −λi jKi jD

)
U j = Gi (16)

where

∆i j =

{
I i = j
0 i ̸= j,

for i, j = 1,2, . . . ,n and I is a 4m2×4m2 identity matrix. By solving
matrix system (16) with Gauss elimination method, we can find Ui
for i = 1,2, . . . ,n. So ui(x,y)≃ T T (x,y)Ui.

4. Convergence analysis

Let (C[Ω],∥.∥) be a Banach space of all continuous functions on Ω
with norm defined by ∥ f (x,y)∥ = max(x,y)∈Ω | f (x.y)|. We denote
the error expression by

ei(x,y) = ∥ui,m(x,y)−ui(x,y)∥,

where ui,m(x,y) and ui(x,y), i = 1, . . . ,n denote the approximate and
exact solutions of the system of two-dimensional Fredholm inte-
gral equations, respectively. We’ll prove that the present numerical
method converges to the exact solution.
Theorem
If ki j(x,y,s, t), i, j = 1,2, . . . ,n and 0 ≤ x,y,s, t ≤ 1 are bounded and



190 International Journal of Applied Mathematical Research

continuous, then approximate solution of system (12), converges to
the exact solution.
proof
Suppose that ui,m(x,y), i = 1, . . . ,n is an approximate value of the
exact solution ui(x,y). Therefore

ui,m(x,y) =
m−1

∑
p=0

m−1

∑
q=0

ci
p,qT 1,1

p,q (s, t)+
m−1

∑
p=0

m−1

∑
q=0

di
p,qT 1,2

p,q (s, t)

+
m−1

∑
p=0

m−1

∑
q=0

ei
p,qT 2,1

p,q (s, t)+
m−1

∑
p=0

m−1

∑
q=0

li
p,qT 2,2

p,q (s, t), (17)

by using Eqs. (13) and (17), we can write

∥ui,m(x,y)−ui(x,y)∥= max
(x,y)∈Ω

|ui,m(x,y)−ui(x,y)|

= max
(x,y)∈Ω

|
n

∑
j=1

λi j

∫ 1

0

∫ 1

0
ki j(x,y,s, t)(

m−1

∑
p=0

m−1

∑
q=0

c j
p,qT 1,1

p,q (s, t)

+
m−1

∑
p=0

m−1

∑
q=0

d j
p,qT 1,2

p,q (s, t)+
m−1

∑
p=0

m−1

∑
q=0

e j
p,qT 2,1

p,q (s, t)

+
m−1

∑
p=0

m−1

∑
q=0

l j
p,qT 2,2

p,q (s, t))dsdt

−
n

∑
j=1

λi j

∫ 1

0

∫ 1

0
ki j(x,y,s, t)u j(s, t)dsdt|

≤ M
n

∑
j=1

∫ 1

0

∫ 1

0
max

(x,y)∈Ω
|u j,m(s, t)−u j(s, t)|dsdt

= M
n

∑
j=1

∫ 1

0

∫ 1

0
∥u j,m(x,y)−u j(x,y)∥dsdt,

where

M = max
0≤x,y,s,t≤1

|λi jki j(x,y,s, t)|< ∞.

Also, we have limm→∞ u j,m(x,y) = u j(x,y), so ∥u j,m(x,y) −
u j(x,y)∥ → 0 as m → ∞ for j = 1, . . . ,n and since M is bounded,
thus

lim
m→∞

∥ui,m(x,y)−ui(x,y)∥→ 0,

so the proof is completed.

5. Numerical illustration

In this section, we present two examples of linear 2D-FIES-2 and
results will be compared with the exact solutions. All results are
computed by using a program written in the Matlab R2014a. in this
regard, The result presented in the following Tables and Figures.
Example 5.1
Consider the system of linear two-dimensional Fredholm integral
equations

u1(x,y) = xy− 6
20 x+

∫ 1
0
∫ 1

0 xu1(s, t)dsdt +
∫ 1

0
∫ 1

0 xst4u2(s, t)dsdt,
u2(x,y) = x2 − 1

6 xy− 1
3 y2 +

∫ 1
0
∫ 1

0 xysu1(s, t)dsdt
+
∫ 1

0
∫ 1

0 y2u2(s, t)dsdt.

One can easily verify that (u1(x,y),u2(x,y)) = (xy,x2) is an exact
solution of the given problem.
The absolute error of ui(x,y):

Ei = |ui,m(x,y)−ui(x,y)|

for i = 1,2 with m = 32, is listed in Table 1. Also Fig. 1 illustrate
the comparison values between the exact solution and the approxi-
mate solution by the presented method. Moreover, Absolute error

Table 1: Numerical results for Example 1, with m = 32.

(x,y) Absolute error Absolute error
E1 E2

(0.0,0.0) 0.0000e-00 0.0000e-00
(0.1,0.1) 2.4369e-05 1.5985e-04
(0.2,0.2) 4.8738e-05 2.4868e-04
(0.3,0.3) 7.3107e-05 2.6647e-04
(0.4,0.4) 9.7476e-05 2.1324e-04
(0.5,0.5) 1.2184e-04 8.8975e-05
(0.6,0.6) 1.4621e-04 2.8442e-04
(0.7,0.7) 1.7058e-04 4.0883e-04
(0.8,0.8) 1.9495e-04 4.6221e-04
(0.9,0.9) 2.1932e-04 4.4457e-04
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Figure 1: Comparison between the Exact solution and the Approximate
solution by the present method for m = 5 and 10 for Example 1.

functions obtained by the present method also shown in Figs. 2 and
3.
Example 5.2
Consider the system of linear two-dimensional Fredholm integral
equations{

u1(x,y) = g1(x,y)+
∫ 1

0
∫ 1

0 yesu1(s, t)dsdt +
∫ 1

0
∫ 1

0 stu2(s, t)dsdt,
u2(x,y) = g2(x,y)+

∫ 1
0
∫ 1

0 u1(s, t)dsdt +
∫ 1

0
∫ 1

0 xu2(s, t)dsdt,

where

g1(x,y) = ex(1+ y)− 3
4

y(e2 −1)− 1
9

g2(x,y) = xy− 3
2
(e−1)− 1

4
x.

One can easily verify that (u1(x,y),u2(x,y)) = (ex(1+ y),xy) is an
exact solution of the given problem.
The results for Example 2 are shown in Table 2. Also Fig. 4 shows
the comparison values between the exact solution and the approxi-
mate solution by the presented method for m = 5 and 10.

6. Conclusion

In this paper, we introduce TFs method for approximating the so-
lution of the linear 2D-FIES-2. The structural properties of TFs
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Figure 2: Absolute error u1(x,y) by the present method for m = 10,20,32
for Example 1.

Table 2: Numerical results for Example 2, with m = 32

(x,y) Approximate solution Absolute error
(u1,m,u2,m) (E1,E2)

(0.0,0.0) (0.9994,-9.4786e-04) (5.5292e-04, 9.4786e-04)
(0.1,0.1) (1.2151, 8.8626e-03) (5.7828e-04, 1.1374e-03)
(0.2,0.2) (1.4651, 3.8632e-02) (6.2267e-04, 1.3270e-03)
(0.3,0.3) (1.7541, 8.8483e-02) (7.1051e-04, 1.5166e-03)
(0.4,0.4) (2.0877, 1.5829e-01) (8.7451e-04, 1.7061e-03)
(0.5,0.5) (2.4719, 2.4810e-01) (1.1576e-03, 1.8957e-03)
(0.6,0.6) (2.9143, 3.5791e-01) (1.0493e-03, 2.0853e-03)
(0.7,0.7) (3.4224, 4.8773e-01) (9.9746e-04, 2.2749e-03)
(0.8,0.8) (4.0049, 6.3754e-01) (1.0519e-03, 2.4644e-03)
(0.9,0.9) (4.6720, 8.0735e-01) (1.2785e-03, 2.6540e-03)

are utilized to reduce the 2D-FIES-2 to a linear system of algebraic
equations, without using any integration. In the above presented
numerical examples one can see that the proposed method well per-
forms for linear 2D-FIES-2.
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Figure 3: Absolute error u2(x,y) by the present method for m = 4,8,16,32
for Example 1.
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solution by the present method for m = 5 and 10 for Example 2.
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