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Abstract

This paper presents a simplified mathematical model for the purpose of studying the resonant responses of a nonlin-
ear dynamical system, (micro - electro - mechanical systems (MEMS)), which represented by a Van-der Pol equation
subjected to a weakly non-linear parametric and forcing excitations. Using Multiple scales method, the Van-der
Pol equation is transformed to a system of second order differential equation up to first order of small parameter
ε. Three types of resonances are studied (harmonic resonance and subharmonic resonances of even order (one -
half and one - fourth )). The modulation equations for each resonances, steady state solutions, frequency-response
equations, stability analysis are determined. Numerical analysis for frequency-response equations and stability con-
ditions are carried out. Results are presented graphically by group of figures. Finally discussion for these figures
are given.
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1 Introduction

Nonlinearities in micro-electro-mechanical systems (MEMS) can arise from various sources such as spring and
damping mechanisms [1, 2] and resistive, inductive, and capacitive circuit elements [3]. Surface and fluids forces
[4, 5] can also be other sources of nonlinearity. However, the inherent source of nonlinearity in electrostatic MEMS
is the nonlinear coupling between the electrostatic force and the displacement of the MEM structure [6]. This
nonlinearity has been shown to give rise to various dynamical behavior like Harmonic and Sub-harmonic resonances
response. There are various methods can be used to drive MEM structures at resonance. The most commonly
used method is the primary-resonance excitation, in which the frequency of the excitation is tuned closed to the
fundamental natural frequency of the microstructure. Examples of this excitation in MEMS can be found in various
applications, such as resonant sensors [7] and RF filters [8]. Jin and Wang [9] showed that driving a resonant
microsensor with a subharmonic excitation of order one-half increased the signal-to-crosstalk ratio as compared to
driving it at primary resonance. Younis et al. [7, 10] used the method of multiple scales to study the response of an
electrostatically actuated resonator to a primary resonance excitation. Also Abdel-Rahman and Nayfeh [11] studied
a superharmonic resonance excitation of order two , and a subharmonic resonance excitation of order one-half.
Furthermore, Nayfeh and Younis [12] investigated the dynamics of a MEMS resonator to a subharmonic resonance
of order one-half and to a superharmonic resonance of order two. Kacem et al. [13] studied the nonlinear dynamics
of nanomechanical beam resonators to improve the performance of MEMS-based sensors. Alsaleem et al. [14]
investigated the nonlinear phenomena, including primary resonance, superharmonic and subharmonic resonances,
in electrostatically actuated resonators both experimentally and theoretically. Zhang and Meng [15] analyzed the
nonlinear dynamics of the electrostatically actuated resonant MEMS sensors under parametric excitation. The
problem of studied the response ”Harmonic, Sub-harmonic and super-harmonic” of weakly non-linear dynamical
system subjected to external excitation, parametric excitation or both is investigated by [16, 17].

In this paper harmonic resonance and subharmonic resonances of order(one - half and one - fourth ) are inves-
tigated by applying the method of multiple scales. For each type of resonance we determine steady-state solution,
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frequency response equation and stability of the steady-state solution. Frequency response curves are plotted in
which solid curve represent stable solutions and dashed curve represent unstable solutions. Finally discussion for
the figures are given.

2 Formulation of the problem and perturbation analysis

The governing equation of motion for a simplified dynamic system of the micro-cantilever beam in MEMS [18]
is represented by the following nonlinear second order differential equation

ü+ Ψ(u, u̇) + ω2
0u+ f0(u) + q(t).e(u) = p(t) (1)

where
Ψ(u, u̇) = 2ε(µ0u̇+ µ1u

2u̇), f0(u) = 0, q(t).e(u) = ε(α1u+ α2u
2 + α3u

3 + α4u
4) cos(Ωt) and p(t) = εF cos(Ωt).

then, equation (1) becomes

ü+ ω2
0u+ 2ε(µ0u̇+ µ1u

2u̇) + ε(α1u+ α2u
2 + α3u

3 + α4u
4) cos(Ωt) = εF cos(Ωt) (2)

Equation (2) represent a Van-der Pol equation subjected to weakly non-linear parametric and forcing excitations,
where, F is the amplitude of forcing excitation , Ω is the frequency of parametric and external excitations, µ0 and
µ1 are the coefficients of viscous linear and nonlinear damping terms and αn (n = 1, 2, 3, 4) are the coefficients of
nonlinear parametric excitation.

Using the method of Multiple Scales (Nayfeh [19]), we get a first order uniform solution of equation (2) in the
form

u(t; ε) = u0(T0, T1) + εu1(T0, T1) + ..., (3)

where T0 = t is the first scale associated with changes occurring at the frequencies ω0 and Ω, and T1 = εt is a slow
scale associated with modulations in the amplitude. In terms of T1, the time derivatives become

d

dt
= D0 + εD1 + ... &

d2

dt2
= D2

0 + 2εD0D1 + ... (4)

where Dn = ∂
∂Tn

. Substituting equations (3) and (4) into equation (2) and equating coefficients of like powers of ε
one obtains

D2
0u0 + ω2

0u0 = 0 (5)

D2
0u1 + ω2

0u1 = −2(µ0D0u0 + µ1u
2
0D0u0 +D0D1u0) + (F − α1u0 − α2u

2
0 − α3u

3
0 − α4u

4
0) cos(T0Ω)) (6)

The solution of equation (5)can be expressed in the complex form

u0 = Aeiω0T0 + Āe−iω0T0 (7)

where Ā is the complex conjugate of A. Then equation (6) becomes,

D0
2u1 + ω2

0u1 =− 2iω0(µ0A+ µ1A
2Ā+A′)eiω0T0

+
(1

2
F − α2AĀ− 3α4A

2Ā2
)
eiΩT0

− 1

2
(α1Ā+ 3α3AĀ

2)ei(Ω−ω0)T0

−
(1

2
α2Ā

2 + 2α4AĀ
3
)
ei(Ω−2ω0)T0

− 1

2
α3Ā

3ei(Ω−3ω0)T0

− 1

2
α4Ā

4ei(Ω−4ω0)T0

+NST.+ c.c.

(8)

where NST. denotes the terms does not produce secular terms and c.c. denotes the complex conjugate.
Equation (8) contain five cases of resonance

Ω ' nω0 ;n = 1, 2, 3, 4, 5

In this paper we restricted our attention to three cases of resonance (harmonic resonance and subharmonic
resonances of order(one - half and one - fourth )).
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3 Harmonic (primary) resonance (Ω ' ω0)

To describe the nearness of the excitation frequency Ω to the fundamental natural frequency ω0 i.e. Ω ' ω0,
we introduce the detuning parameter σ to convert the small-divisor terms into secular terms according to

Ω = ω0 + εσ (9)

where σ is the detuning parameter. Eliminating the secular terms from the equation (8) yields

−2iω0(µ0A+ µ1A
2Ā+A′) + (

1

2
F − α2AĀ− 3α4A

2Ā2)eiσT1 = 0 (10)

where the prime (′) indicates to the derivative with respect to T1. Writing A in the polar form as A =
1
2a(T1)eiβ(T1) into equation (10) where a(T1) and β(T1) are real-valued functions, representing, respectively, the
amplitude and phase of the response. Separating real and imaginary parts, we obtain the following modulation
equations:

a′ =
1

2ω0
(F − 1

2
α2a

2 − 3

8
α4a

4) sin(γ)− µ0a−
1

4
µ1a

3 (11)

aγ′ = aσ +
1

2ω0
(F − 1

2
α2a

2 − 3

8
α4a

4) cos(γ) (12)

where γ = σT1 − β(T1).
For steady state solution, a′ = γ′ = 0, in equations (11) and (12) we obtain

aω0(µ0 +
1

4
µ1a

2) =
1

2
(F − 1

2
α2a

2 − 3

8
α4a

4) sin(γ) (13)

aω0σ = −1

2
(F − 1

2
α2a

2 − 3

8
α4a

4) cos(γ) (14)

Equations (13) and (14) show that there are no trivial solution at a = 0. For non-trivial solution i.e. at a 6= 0,
eliminating γ from equations (13) and (14), we get the following frequency- response equation

a2
[
σ2 + (µ0 +

1

4
µ1a

2)2
]

=
1

4ω2
0

(
F − 1

2
α2a

2 − 3

8
α4a

4
)2

(15)

Solving Equation (15) for σ, we obtain

σ = ±

√
−
(
µ0 +

1

4
µ1a2

)2

+
1

4a2ω0
2

(
F − 1

2
α2a2 − 3

8
α4a4

)2

(16)

To determined the stability of the non-trivial solutions, let

a = a0 + a1(T1) & γ = γ0 + γ1(T1) (17)

where a0 and γ0 correspond to a non-trivial solutions and a1 and γ1 are perturbations which are assumed to be small
compared with a0 and γ0. Substituting (17) into equations (11) and (12) and linearizing the resulting equations,
we obtain

a′1 = −
a2

0µ1

(
−3a4

0α4 + 4a2
0α2 − 24F

)
− 4µ0

(
9a4

0α4 + 4a2
0α2 + 8F

)
4 (3a4

0α4 + 4a2
0α2 − 8F )

a1 − a0σγ1 (18)

γ′1 =
σ
(
9a4

0α4 + 4a2
0α2 + 8F

)
−3a5

0α4 − 4a3
0α2 + 8a0F

a1 −
1

4

(
a2

0µ1 + 4µ0

)
γ1 (19)
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Equations (18) and (19) admit solutions of the form (a1, γ1) = (Γ1,Γ2)eθT1 . The eigenvalues equation can be
obtained as

θ =
1

32g2

(
K ±

√
K2 + 64g2 (16g1 (µ0

2 + σ2) + 4µ0µ1 (g1 + g3) a2
0 + g3µ2

1a
4
0)

)
(20)

where,
g1 = 8F + 4α2a

2
0 + 9α4a

4
0 , g2 = −8F + 4a2

0α2 + 3a4
0α4, g3 = 24F − 4α2a

2
0 + 3α4a

4
0

and K =
(
16µ0 (g1 − g2)− 4µ1 (g2 − g3) a2

0

)
Consequently, a solution is stable if and only if the real parts of both eigenvalues of (20) are less than zero.

4 Subharmonic resonance of order 1/2 (Ω ' 2ω0)

For this type of oscillations resonance, one must have Ω ' 2ω0, to express this nearness, let

Ω = 2ω0 + εσ (21)

and write

(Ω− ω0)T0 = ω0T0 + εσT0 = ω0T0 + σT1 (22)

Eliminating the secular terms from the equation (8) yields

2iω0

(
µ1A

2Ā+A′ + µ0A
)

+
1

2

(
3α3AĀ

2 + α1Ā
)
eiT1σ = 0 (23)

Using the polar form A = 1
2a(T1)eiβ(T1) into the equation (23) and separating real and imaginary parts, we obtain

the following modulation equations:

a′ = −1

4

(
µ1a

3 + 4µ0a
)
−
(
3α3a

3 + 4α1a
)

sin(γ)

16ω0
(24)

aγ′ = σa−
(
3α3a

3 + 4α1a
)

cos(γ)

8ω0
(25)

where γ = σT1 − 2β.
For steady state solution, a′ = γ′ = 0, in equations (24) and (25) we obtain(

3α3a
3 + 4α1a

)
sin(γ) = −4ω0a

(
µ1a

2 + 4µ0

)
(26)(

3α3a
3 + 4α1a

)
cos(γ) = 8ω0σa (27)

Equations (26) and (27) show that there are two possibilities: (trivial solution ) at a = 0 and ( nontrivial solution)
at a 6= 0. Squaring and adding (26) and (27) we get the frequency-response equation

σ = ± 1

8ω0

√
(3α3a2 + 4α1) 2 − 16ω2

0 (µ1a2 + 4µ0) 2 (28)

The analysis of the stability of the trivial solutions is equivalent to the analysis of the linear solutions of equation
(23) by neglecting the non-linear terms we get

1

2
α1e

iσT1Ā+ 2iω0 (A′ + µ0A) = 0 (29)

to solve equation (29) one lets A = e
1
2 iσT1 (B (T1) + ib (T1)) where B and b are real, separates real and imaginary

parts and get(α1

2
+ ω0σ

)
b− 2ω0B

′ − 2ω0µ0B = 0 (30)

2ω0b
′ + 2ω0µ0b+

(
ω0σ −

α1

2

)
B = 0 (31)
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Equation (30) and (31) admit solution of the form (B, b) ∝ (B, b)eθ0T1 where (B and b) are constants then(α1

2
+ ω0σ

)
b− 2ω0 (θ0 + µ0)B = 0 (32)

2ω0 (θ0 + µ0) b+
(
ω0σ −

α1

2

)
B = 0 (33)

the eigenvalues equation can be obtained as

θ0 = −µ0 ±
√
α2

1 − 4ω2
0σ

2

4ω0
(34)

To analysis the nontrivial solution we followed steps similar to those in the preceding section, we obtains the
following variational equations describing the stability of the steady state solutions:

a′1 = −2 (α1µ1 − 3α3µ0) a2
0

3α3a2
0 + 4α1

a1 −
1

2
σa0γ1 (35)

γ′1 = − 6α3σa0

3α3a2
0 + 4α1

a1 − (
1

2
µ1a

2
0 + 2µ0)γ1 (36)

Equations (35) and (36) admit solution of the form (a1, γ1) ∝ (c1, c2)eθT1 where (c1 and c2) are constants, provided
that

θ = −
3α3µ1a

4 + 8α1

(
2µ0 + µ1a

2
)

4(4α1 + 3α3a2)
± 1

4

√
256α2

1µ
2
0 + 96α1α3a2 (2σ2 + µ0G) + 9α2

3a
4 (16σ2 +G2)

(4α1 + 3α3a2)
2 (37)

so that G = 8µ0 + µ1a
2

5 Subharmonic resonance of order 1/4 (Ω ' 4ω0)

In this case, Ω ' 4ω0. Then we can write

Ω = 4ω0 + εσ (38)

and write

(Ω− 3ω0)T0 = ω0T0 + εσT0 = ω0T0 + σT1 (39)

Then eliminating the secular terms from the equation (8) yields

2iω0

(
µ1A

2Ā+A′ + µA
)

+
1

2
α3Ā

3eiT1σ = 0 (40)

Using the polar form A = 1
2a(T1)eiβ(T1) into the equation (40) and separating real and imaginary parts, we obtain

the following modulation equations:

a′ = −α3a
3 sin(γ)

16ω0
− 1

4
µ1a

3 − µ0a (41)

aγ′ = σa− α3a
3 cos(γ)

4ω0
(42)

where γ = σT1 − 4β.
For steady state solution, a′ = γ′ = 0, in equations (41) and (42) we obtain

α3a
3 sin(γ) = −4µ1ω0a

3 − 16µ0ω0a (43)

α3a
3 cos(γ) = 4ω0σa (44)
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Equations (43) and (44) show that there are two possibilities : (trivial solution ) at a = 0 and ( nontrivial solution)
at a 6= 0. Squaring and adding (43) and (44) we get the frequency-response equation

σ = ±
√
α2

3a
4 − 16ω2

0(4µ0 + µ1a2)2

4ω0
(45)

Now, the analysis of stability of the trivial solution is determined as in the preceding section as follows, we find
that the trivial solution is stable for all values of σ iff µ0 ≥ 0, by neglecting the non-linear terms in the equation
(40) yields

−2iω0 (A′ + µ0A) = 0 (46)

to solve equation (46) one lets A = e
1
2 iT1σ (B (T1) + ib (T1)) where B and b are real, separates real and imaginary

parts and get

b′ + µ0b+
σ

2
B = 0 (47)

σ

2
b− µ0B −B′ = 0 (48)

Equation (47) and (48) admit solution of the form (B, b) ∝ (B, b)eθ0T1 where (B, b) are constant then

(θ0 + µ0)b+
σ

2
B = 0 (49)

σ

2
b− (θ0 + µ0)B = 0 (50)

the eigenvalues equation can be obtained as

θ0 = −µ0 ∓
iσ

2
(51)

To analysis the nontrivial solution we followed steps similar to those in the preceding section, we obtains the
following variational equations describing the stability of the steady state solutions:

a′1 = 2µ0a1 −
σa0

4
γ1 (52)

γ′1 = −(µ1a
2
0 + 4µ0)γ1 −

2σ

a0
a1 (53)

Equations (53) and (52) admit solution of the form (B, b) ∝ (B, b)eθT1 where (B, b) are constant, provided that

θ =
−1

2

(
µ1a

2 + 2µ0

)
± 1

2

√
(µ1a2 + 6µ0)

2
+ 2σ2 (54)

6 Numerical results and discussion

This section presents numerical results in the form of frequency response diagrams obtained by solving the
frequency response equations (16), (28) and (45) and stability conditions (20), (34), (37), (51) and (54). The
numerical results are plotted in a groups of figures (1-7), (8-13), and (14-18 ), which represent the variation of the
amplitude (a) with the detuning parameter (σ) for given values of the other parameters. In all figures, the soled
lines represent stable solutions, while the dashed lines represent unstable solutions.

Figures (1-7) represent the frequency response curves of the harmonic resonance for the parameters (F =
0.4, ω0 = 0.05, µ0 = 0.6, µ1 = 0.9, α2 = 0.1 and α4 = 0.2). In (Fig.1) we have two curves the lower curve stable
solutions and the upper one unstable solutions. These curves are symmetric about σ = 0. When the coefficient of the
external force F is increased (decreased) the two curves move upward (downward) and have increased (decreased)
magnitudes, the range of definition and stability does not change (Fig.2). If natural frequency ω0 is increased
(decreased), we find that the two curves diverge(converge) from (to) each other, and have decreased (increased)
magnitudes (Fig.3). If µ0 is increased (decreased), we find that the two curves diverge (converge) from (to) each
other, and have decreased (increased) magnitudes for certain value of σ. By increasing σ after this value, we note
that their is no changes in the magnitudes (i.e. their exist a saturation) (Fig.4). If µ1 is increased (decreased), the
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two curves diverge (converge) from (to) each other, and have decreased (increased) magnitudes for certain value of
σ. By increasing σ after this value, we note that their is no changes in the magnitudes (i.e. their exist a saturation)
(Fig.5). If α2 increased (decreased) we notice that the two curves move downward (upward) and have decreased
(increased) magnitudes for certain value of σ. By increasing σ after this value, we note that their is no changes
in the magnitudes (i.e. their exist a saturation)(Fig.6). When α4 are increased (decreased) the two curves move
downward (upward) and have decreased (increased) magnitudes for certain value of σ. By increasing σ after this
value, we note that their is no changes in the magnitudes (i.e. their exist a saturation) (Fig.7).

Figures (8-13) represent the frequency response curves of the subharmonic resonance of order 1
2 for the parameters

(ω0 = 0.05, µ0 = −2.0, µ1 = 2.0, α1 = −0.12 and α3 = −0.1). In (Fig.8) we note that the response amplitude has
oval it is symmetric about σ = 0 and it consist of two branches. The upper branch has stable solutions and the
lower branch has unstable solutions, and there exist two saddle node bifurcations at the points σ = ±6.359. When
the coefficient of nonlinear parametric excitation α1 decreases with negative values up to -0.5 the oval shifts upward
and given semi closed curve, the regions of definition, multivalued and stability are increased and the saddle node
bifurcations exist at the points σ = ±12.07. As α1 increases with negative values up to -0.01 the oval shrink and
interfere, the zones of definition, multivalued and stability are decreased and the saddle node bifurcations exist
at the points σ = ±4.688 as shown in (Fig.9). For increasing the value of coefficient of nonlinear parametric
excitation α3 with negative values up to -0.05 the oval contracted respectively, the zones of definition, multivalued
and stability are decreased and the saddle node bifurcations exist at the points σ = ±2.905. When the value of
α3 decreases with the negative values up to -0.11, we note that the oval expands and it has increased magnitudes,
the zones of definition, multivalued and stability are increased and the saddle node bifurcations exist at the points
σ = ±7.974. As α3 = −0.14 we see that the multivalued solutions disappear, and the response amplitude given
single valued solution which has unstable decreasing magnitudes as (Fig.10). When the damping factor µ0 decreases
with negative values up to -3, we note that the oval shifts upward and it has increased magnitudes respectively,
the zones of definition, multivalued and stability are increased and the saddle node bifurcations exist at the points
σ = ±8.613. As µ0 = −0.1 the oval shifts downward and contracted and given semi closed curve, the regions of
definition, multivalued and stability are decreased and the saddle node bifurcations exist at the points σ = ±2.043 as
shown in (Fig.11). For decreasing the damping factor µ1 we note that the multivalued solutions disappear, and the
response amplitude given single valued solution which has unstable decreasing magnitudes, for further decreasing
of µ1 up to 1.5, we observe that the single valued curve move upward and has increasing unstable magnitudes, the
zone of definition is increased for this decreasing of µ1, but, when µ1 take the values (4 and 8), we see that the oval
is contracted and move downward respectively, the regions of definition, multivalued and stability are decreased,
the saddle node bifurcations exist at the points σ = ±2.924 and σ = ±1.981 respectively as shown in (Fig.12).
In (Fig.13), as ω0 increasing to take the values (0.07 and 0.09), the ovale is contracted respectively, the zones
of definition, multivalued and stability are decreased, the saddle node bifurcations at the points σ = ±3.55 and
σ = ±2.564 respectively. When ω0 = 0.03, the multivalued disappear and the response amplitude has single valued
curve and it has unstable decreased magnitudes. For further decreasing of ω0, the single valued curve is separated
into two branches.

Figures (14-18) represent the frequency response curves of the subharmonic resonance of order 1
4 at almost

the same parameters values taken at the preceding paragraph to represent the frequency response curves of the
subharmonic resonance of order 1

2 ( ω0 = 0.05, µ0 = −2.0, µ1 = 2.0 and α3 = −0.1). In (Fig.14) the response
amplitude (a) has ellipse so that it symmetric about σ = 0 and it consist of two branches. The upper branch
has stable magnitudes and the lower branch has unstable solutions, and there exist two saddle node bifurcations
at the points σ = ±2.070. As ω0 increasing to take the value 0.11, the ellipse is shrank, the zones of definition,
multivalued and stability are decreased, the saddle node bifurcations at the points σ = ±0.910. When ω0 decreasing
up to ω0 = 0.03, the ellipse is expand, the zones of definition, multivalued and stability are increased, the saddle
node bifurcations at the points σ = ±3.672, but, at the value of ω0 decreasing down to ω0 = 0.01, the multivalued
disappear and the response amplitude has single valued curve and it has unstable decreased magnitudes as (Fig.15).
When the value of coefficient of nonlinear parametric excitation α3 increaseing with the negative values up to -0.05,
we note that the ellipse contracted respectively, the zones of definition, multivalued and stability are decreased and
the saddle node bifurcations exist at the points σ = ±1.001. and it has increased magnitudes, the zones of definition,
multivalued and stability are increased and the saddle node bifurcations exist at the points σ = ±11.01. When
the value of α3 decreases with the negative values up to -0.2, we note that the ellipse expands and it has increased
magnitudes, the zones of definition, multivalued and stability are increased and the saddle node bifurcations exist
at the points σ = ±4.619. As α3 = −0.4 we see that the multivalued solution is disappear and the response
amplitude given single valued curve which has unstable decreasing magnitudes as (Fig.16). When the damping
factor µ0 decreases with negative values up to (-3.0 and -4.0), we note that the ellipse shifts upward and it has
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increased magnitudes respectively, the zones of definition, multivalued and stability are increased and the saddle
node bifurcations exist at the points σ = ±3.101 and σ = ±4.137 respectively. As µ0 increases with negative values
up to (-1.0 and -0.5), the ellipse shifts downward and contracted, the regions of definition, multivalued and stability
are decreased and the saddle node bifurcations exist at the points σ = ±1.037 and σ = ±0.518 respectively as shown
in (Fig.17). For decreasing the damping factor µ1 we note that the multivalued solution is disappear and the response
amplitude given single valued curve which has unstable decreasing magnitudes, for further decreasing of µ1 up to 0.5,
we observe that the single valued curve move upward and has increasing unstable magnitudes, the zone of definition
is increased for this decreasing of µ1, but, when µ1 increasing to take the values (3 and 5), we see that the ellipse
is contracted and move downward respectively, the regions of definition, multivalued and stability are decreased,
the saddle node bifurcations exist at the points σ = ±1.355 and σ = ±0.804 respectively as shown in (Fig.18).
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Fig.3: Variation of the amplitude of the response with Fig.4: Variation of the amplitude of the response with

the detuning parameter for increasing and decreasing ω0 the detuning parameter for increasing and decreasing µ0
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Fig.5:Variation of the amplitude of the response with Fig.6:Variation of the amplitude of the response with

the detuning parameter for increasing and decreasing µ1 the detuning parameter for increasing and decreasing α2
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Fig.7:Variation of the amplitude of the response with Fig.8:The frequency response curves of the subharmonic

the detuning parameter for increasing and decreasing α4 resonance of order 1
2 for the parameters ω0 = 0.05
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Fig.9:Variation of the amplitude of the response with Fig.10:Variation of the amplitude of the response with

the detuning parameter for increasing and decreasing α1 the detuning parameter for increasing and decreasing α3
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Fig.11:Variation of the amplitude of the response with Fig.12:Variation of the amplitude of the response with

the detuning parameter for increasing and decreasing µ0 the detuning parameter for increasing and decreasing µ1
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Fig.13:Variation of the amplitude of the response with Fig.14:The frequency response curves of the subharmonic

the detuning parameter for increasing and decreasing ω0 resonance of order 1
4 for the parameters ω0 = 0.05
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Fig.15:Variation of the amplitude of the response with Fig.16:Variation of the amplitude of the response with

the detuning parameter for increasing and decreasing ω0 the detuning parameter for increasing and decreasing α3
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Fig.17:Variation of the amplitude of the response with Fig.18:Variation of the amplitude of the response with

the detuning parameter for increasing and decreasing µ0 the detuning parameter for increasing and decreasing µ1

7 Conclusion

In this paper we studied the weakly non-linear dynamic response (micro - electro - mechanical systems (MEMS))
which represented mathematical model a Van-der Pol equation subjected to a weakly non-linear parametric and
forcing excitations. The study is devoted to harmonic resonance and subharmonic resonances of order (one - half
and one - fourth). By using multiple scales method, for each resonance modulation equation, steady-state solutions,
frequency response equation and stability of the steady-state solution are determined. Frequency response curves
are plotted. Finally discussion for the figures are given.

From the frequency response curves of the harmonic resonance, we observe that the response amplitude consists
of two curves so that the lower curve has stable solutions and the upper curve has unstable solutions. The two
curves are symmetric a bout σ = 0. The two curves move upward and downward when F increased and decreased
magnitudes respectively and the range of definition and stability does not change. When ω0 or µ0 or µ1 is increased
the two curves diverge from each other, and have decreased magnitudes. When ω0 or µ0 or µ1 is decreased the two
curves converge to each other, and have increased magnitudes. If α2 or α4 increased (decreased) we notice that
the two curves move downward (upward) and have decreased (increased) magnitudes. We observe that their is a
saturation phenomena at the cases of variations of µ0, µ1, α2 and α4.

From the frequency response curves of the subharmonic resonance of order 1
2 we observe that the trivial solution

has unstable solutions. The non trivial solution loses stability and the multivalued disappear when α3 = −0.14,
µ1 = 1.5 and ω0 = 0.03 . The zones of definition are increased and decreased when the parameters α1, α3, µ0 and
µ1 are decreased and increased respectively. The oval is divided into three branches when α1 = −0.5 and µ0 = −0.1
so that the lower branches are symmetric about σ = 0 and have unstable solutions.

From the frequency response curves of the subharmonic resonance of order 1
4 we observe that the ellipse con-

tracted and expanded for increasing and decreasing ω0 and α3 respectively. The ellipse contracted (expanded) and
move downward (upward) for increasing (decreasing) µ0 and µ1.
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