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Abstract 
 

This work provided the evolution of the algorithm for analytic solution of system of fractional differential-algebraic equations (FDAEs). 

The algorithm referred to good effective method for combination the Laplace Iteration method with general Lagrange multiplier (LLIM). 

Through this method we have reached excellent results in comparison with exact solution as we illustrated in our examples. 
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1. Introduction 

The fractional calculus has a long history from 30 September 

1695, when the derivative of α =
1

2
 has been described by Leibniz 

[1], [2]. The theory of derivatives and integrals of non-integer 

order goes back to Leibniz, Liouville, Grunwald, Letnikov and 

Riemann. There are many interesting books about fractional calcu-

lus and fractional differential equations [1], [2], [3], [4].  

Differential equations of fractional order have been found to be 

effective to describe some physical phenomena such as rheology, 

damping laws, fluid flow and so on [5], [6]. 

Recently, many important mathematical models can be expressed 

in terms of systems of fractional order differential-algebraic equa-

tions. 

In general, most fractional order differential-algebraic equations 

do not have exact solution. Therefore, development of effective 

numerical techniques, which offer precise approximate solution, 

has become an active research area. In this regard, Ibis and Bay-

ram [7], Ibis et al. [8], Zurigat et al. [9], and Ding and Jiang [10], 

Damarla S.K., and M. Kundu [11], Barani B., et al.[12], extended 

the application of Adomian Decomposition Method (ADM), Vari-

ational Iteration Method (VIM), Fractional Differential Transform 

Method (FDTM), Homotopy Analysis Method (HAM), Homotopy 

Perturbation Method (HPM), Generalized Triangular Function 

Operational Matrices (TF), and Waveform relaxation Method to 

solve fractional order differential –algebraic equations. 

In 2013, Habibolla et al. [13], were used the Laplace Iteration 

method (LIM) techniques to find approximation solution to the 

system of linear and nonlinear equations it did not require any 

small parameter in an equation as perturbation techniques do and 

use a Lagrange multiplier, and which called Reconstruction Varia-

tional Iteration method.  

This paper is concerned with the development of an efficient algo-

rithm for the analytic solutions of systems of fractional differen-

tial-algebraic equations (FDAEs). The proposed algorithm is an 

elegant combination of the Laplace Iteration method with the La-

grange multiplier (LLIM). Moreover, it was demonstrated to solve 

a large class of linear and nonlinear system problems effectively, 

easily and accurately. Using approximation which rapidly, con-

verge to accurate solutions.  

The paper is organized as follows: In section 2, we give the defini-

tions of fractional calculus. In section 3, we now identification of 

the Lagrange multipliers. We give a brief description of how the 

method works and propose an algorithm with Lagrange multiplier. 

LIM for system of fractional order differential-algebraic equa-

tions, in section 4. We applied the algorithm on some linear and 

nonlinear FDAEs in section 5. Finally, we give some concluding 

remarks in section 6. 

2. Basic definitions of fractional calculus 

In this section, we provide used definitions of fractional calculus 

[14]. 

 

Definition 2.1: A real function f (t), t >0, is said to be in the space 

𝐶𝜇, 𝜇 ∈ 𝑅  if there exists a real number 𝑝 > 𝜇,  such that 𝑓(𝑡) =

𝑡𝑝𝑓1(𝑡), where 𝑓1(𝑡) ∈ 𝐶[0,∞] and it is said to be in the space 

𝐶𝜇
𝑚 if and only if 𝑓(𝑚) ∈ 𝐶𝜇 , 𝑚 ∈ 𝑁. 

 

Definition 2.2: The Riemann-Liouville fractional order integral of 

𝛼 > 0 of function 𝑓(𝑡) ∈ 𝐶𝜇 , 𝜇 > −1 is defined as 

 

Jαf(t) =
1

Γ(α)
∫ (t − τ)α−1f(τ)dτ
t

0
                                               (2.1) 

 

Definition 2.3: The Riemann-Liouville fractional order derivative 

(RL) of function f(t) is defined as 

 

Dt
αf(t) =  DmJm−αf(t)  

 

=
1

Γ(m−α)
 
dm

dtm
∫ (t − τ)m−α−1f(t)dτ
t

0
, t > 0                              (2.2) 
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Where α  is a non-integer satisfying the relation m− 1 < α ≤
m,m ∈ N. 
 

Definition 2.4: The fractional order derivative (RL) of function 

𝑓(𝑡) in Caputo sense is defined as 

 

D∗
αf(t) =  Jm−αDmf(t)  

 

=
1

Γ(m−α)
 ∫ (t − τ)m−α−1f (m)(τ)dτ
t

0
, t > 0                              (2.3) 

 

For the Caputo’s derivative we have,  

D∝c = 0,  c constant, 

 

D∝tβ = {
0, β ≤∝ −1

Γ(β+1)

Γ(β−α+1)
tβ−α, β > α − 1 

                                           (2.4) 

 

Caputo.s fractional differentiation is a linear operation and if f(τ) 
is continuous in [a, t] and g(τ) has m+1 continuous derivatives in 

[a, t], it satisfies the so called Leibnitz rule 

 

D∝(f(t)g(t)) = ∑ (
∝
k
)∞

k=0 g(k)(t)D∝−kf(t)                               (2.5) 

 

For establishing our results. 

 

Definition 2.5: The single parameter and the two parameters 

variants of the Mittag- Leffler function are denoted by 𝐸∝(𝑡) and 

𝐸∝,𝛽(𝑡), respectively, which are relevant for their connection with 

fractional calculus, and are defined as: 

 

E∝(t) =  ∑
tk

Γ(∝k+1)
∞
k=0 , ∝> 0, t ∈ C                                          (2.6) 

 

E∝,β(t) =  ∑
tk

Γ(∝k+β)
∞
k=0 , ∝, β > 0, t ∈ C                                   (2.7) 

 

Some special cases of the Mittag-Leffler function are as follows: 

 

E1(t) = e
t, E∝,1(t) = E∝(t).  

 

Other properties of the Mittag-Leffler functions can be found in 

[15]. These functions are generalizations of the exponential func-

tion because; most linear differential equations of fractional order 

have solution that are expressed in terms of these functions. 

3. Variational iteration method 

To illustrate the basic concept of the technique, we consider the 

following general differential equation: 

 

L(x) + N(x) – f (t) = 0,                                                               (3.1) 

 

Where L is a linear operator, N is a nonlinear operator, and f (t) 

the function term. In the variational iteration method [16], [17], 

[18], [19], a correction functional can be constructed as follows: 

 

xn+1(t) = xn(t) + ∫ λ(s)(Lxn(s) + Nxň(s) − f(s))ds
t

0
           (3.2) 

 

Where λ(t) is a general Lagrange multiplier [16], [17],[18], [19], 

which can be identified optimally via a variational iteration meth-

od. The subscripts n denoted the nth approximation, xň is consid-

ered as a restricted variation. That is δxň = 0: equation (3.2), is 

called a correct functional. 

4. Dsecription of the new method (LLIM) 

In this article, we consider the following non-homogenous, non-

linear system of fractional order differential-algebraic equations  

D∗
∝ixi(t) = hi(t, x1 , x2, … , xn)

 0 = g(t, x1, x2, … , xn)
 }                                                 (4.1) 

 

With initial conditions xi(0) = ai, i = 1, 2, … , n.  Here D∗
∝i  is Ca-

puto fractional derivative of order ∝i , satisfying the relation  

 

m− 1 <∝i≤ m,m ∈ N.  
 

Eq. (4.1) can be rewritten as: 

 

 

L1x1(t) + N1(t, x1, x2, … , xn) = f1(t)

L2x2(t) + N2(t, x1, x2, … , xn) = f2(t)
.
.

Lnxn(t) + Nn(t, x1 , x2, … , xn) = fn(t)
0 = g(t, x1 , x2, … , xn) }

 
 

 
 

                                  (4.2) 

 

Where Li is a linear operator, Ni a nonlinear operator and fi(t) is 
an inhomogenous item form i=1, 2… n. Eq. (4.2) can be rewritten 

down as a correction function in the following way: 

 

Lixi(t) = fi(t) − Ni(t, x1 , x2 , … , xn)  
 

= Ri(t, x1 , x2, … , xn), i=1, 2… n                                               (4.3) 

 

Therefore: 

 

𝐿𝑖𝑥𝑖(t) = 𝑅𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛), i=1, 2… n. 

 

The Laplace Iteration Method assumed a series solution for 𝑥𝑖 
given by an infinite sum of components: 

 

𝑥𝑖(𝑡) = 𝑙𝑖𝑚𝑛→∞ 𝑥𝑖
𝑝(𝑡) = 𝑙𝑖𝑚𝑛→∞ ∑ 𝑣𝑖

𝑗(𝑡)
𝑝
𝑗=0 , 𝑖 = 1,2,… , 𝑛  (4.4) 

 

In which 𝑥𝑖
𝑛 indicates the n-th approximation of 𝑥𝑖  , where 𝑣𝑖

𝑗
 is 

the 𝑗𝑡ℎ  component of the solution of 𝑥𝑖  and 𝑣𝑖
0 is the solution of 

𝐿𝑖𝑥𝑖 = 0 along with the following initial conditions of the main 

problem: 

 

𝑣𝑖
1(𝑡) = 𝜑𝑖(𝑣𝑖

0)  
 

𝑣𝑖
𝑘+1(𝑡) = 𝜑𝑖(∑ 𝑣𝑖

𝑗(𝑡)𝑘
𝑗=0 ) − ∑ 𝑣𝑖

𝑗(𝑡)𝑘
𝑗=0 , 𝑘 ≥ 1  

 

In which 𝜑𝑖(𝑣𝑖
𝑘) is obtained as follows: 

 

𝐿𝑖𝜑𝑖(𝑣1
𝑘 , 𝑣2

𝑘 , … , 𝑣𝑛
𝑘) = 𝑅𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛),                              (4.5) 

 

Using the homogenous initial conditions, supposing that 𝐿𝑖 = 𝐷
∝𝑖, 

therefore, taking Laplace transform to both sides of Eq. (4.5) in 

the usual way and using the homogenous initial conditions, the 

result can be obtained as following: 

 

𝑝𝑖(𝑠).𝛷𝑖
𝑘(𝑠) = ℛ𝑖(𝑣𝑖

𝑘(𝑠)),                                                       (4.6) 

 

Where ℒ[𝜑𝑖(𝑣1
𝑘, 𝑣2

𝑘 , … , 𝑣𝑛
𝑘)] = 𝛷𝑖

𝑘 , 𝑝𝑖(𝑠)  is a fractional polyno-

mial with the fractional degree of the highest derivative in Eq. 

(4.6) (The same as the highest order of the linear operator 𝐿𝑖  ). 
Thus,  

 

ℒ[𝑤] = 𝜛,𝜓𝑖(𝑠) =
1

𝑝𝑖(𝑠)
, ℒ[𝑢𝑖(𝑡)] = 𝜓𝑖(𝑠)                             (4.7) 

 

In Equations (4.5) and (4.6), the function ℛ𝑖(𝑣𝑖
𝑘(𝑠))  and 

𝑅𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)  are abbreviated as ℛ𝑖  and 𝑅𝑖  respectively. 

Hence, Eq. (4.6) is rewritten as: 

 

𝛷𝑖
𝑘(𝑠) = ℛ𝑖((𝑣1

𝑘 , v2
𝑘 , … , 𝑣𝑛

𝑘)(𝑠)) . 𝜓𝑖(𝑠)                                  (4.8) 
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Now, by applying the inverse Laplace Transform to both side of 

Eq. (4.8) and using the convolution Theorem, the following rela-

tion can be presented: 

 

∅𝑖(𝑣1
𝑘 , 𝑣2

𝑘 , … , 𝑣𝑛
𝑘)  

 

= ∫ 𝑅𝑖((𝑣1
𝑘, 𝑣2

𝑘 , … , 𝑣𝑛
𝑘)(𝜏)) . 𝑢𝑖(𝑡 − 𝜏) 𝑑𝜏

𝑡

0
                              (4.9) 

 

Therefore 

 

𝑥𝑖
𝑝+1(𝑡) = ∑𝑣𝑖

𝑗(𝑡)

𝑝+1

𝑗=0

= 𝑥𝑖
0(𝑡) + ∫ 𝑅𝑖(𝑥𝑖

𝑝(𝜏)) . 𝑢𝑖(𝑡 − 𝜏) 𝑑𝜏
𝑡

0

,  

i=1,2,…,n                                                                                (4.10) 

 

After identifying the initial approximation of 𝑥𝑖
0, the remaining 

approximations 𝑥𝑖
𝑝
, 𝑝 > 0 can be determined so that each term can 

be determined by previous terms and the approximation of itera-

tion formula can be entirely evaluated.  

Consequently, the exact solution may be obtained by: 

 

𝑥𝑖 = 𝑙𝑖𝑚𝑝→∞ 𝑥𝑖
𝑝 (𝑡)  

 

= 𝑙𝑖𝑚𝑝→∞ ∑ 𝑣𝑖
𝑗(𝑡)

𝑝
𝑗=0 , 𝑖 = 1, 2, … , 𝑛                                      (4.11) 

 

Which is the Laplace Iteration method. 

Now, we can construct a correct function as follows: 

 

𝑥𝑛+1(𝑡) = 𝑥0(𝑡) +  

 

∫  𝜆(𝜏)𝑅𝑖((𝑣1
𝑘, 𝑣2

𝑘 , … , 𝑣𝑛
𝑘)(𝜏)) . 𝑢𝑖(𝑡 − 𝜏) 𝑑𝜏

𝑡

0
                        (4.12) 

 

The optimal value of the general Lagrange multipliers 𝜆 can be 

identified by using the stationary conditions of the variational 

theory. 

And now, consider nonlinear fractional order differential equation: 

 

𝐷∗
𝛼𝑥(𝑡) + 𝑎 𝑥(𝑡) + 𝑁𝑥(𝑡) − 𝑓(𝑡) = 0                                   (4.13) 

 

The correction function (4.13) can be approximately expressed a 

follows: 

 

𝑥𝑛+1(𝑡) = 𝑥𝑛(𝑡)+0𝐼𝑡
∝[𝜆(𝜏)(𝐷∗

𝛼𝑥(𝑡) + 𝑎 𝑥(𝑡) + 𝑁𝑥(𝑡) − 𝑓(𝑡))] 
                                                                                              (4.14) 

This yields the stationary conditions  

 

𝜆(𝑡) = −1and 𝜆(𝛼)(𝑡) − 𝑎𝜆(𝑡) = 0. 
 

 𝜆(𝛼)(𝑡) − 𝑎𝜆(𝑡) = 0 ⟹ 𝜆(𝑡) = 𝐸𝛼,1(𝑎𝑡
𝛼)𝜆(0)  

 

                                                 = −∑
(𝑎𝑡𝛼)𝑘

𝛤(∝𝑘+1)
∞
𝑘=0  

 

Consider two cases: 

 

If a=1 then 𝜆(𝑡)=−∑
𝑡𝛼𝑘

𝛤(∝𝑘+1)
∞
𝑘=0  , 

 

If a= -1 then 𝜆(𝑡)=∑
(−1)𝑘+1𝑡𝛼𝑘

𝛤(∝𝑘+1)
∞
𝑘=0  

5. Applications and results 

In this section, we solve linear and nonlinear fractional order dif-

ferential –algebraic equations by Laplace Iteration Method with 

Lagrange Multiplier. 

Example 1: consider the following system of linear fractional 

order differential –algebraic equations [11] 

 

𝐷∗
𝛼𝑥(𝑡) +  𝑥(𝑡) − 𝑦(𝑡) + 𝑠𝑖𝑛 𝑡 = 0

 𝑥(𝑡) + 𝑦(𝑡) = 𝑒−𝑡 + 𝑠𝑖𝑛 𝑡  , 𝑡 ∈ [𝑜, 1], 0 < 𝛼 ≤ 1 
}                (5.1) 

 

Subject to initial conditions x (0) =1, y (0) =0. For the special case 

of 𝛼 = 1, we have analytical solution 𝑥(𝑡) = 𝑒−𝑡 and 𝑦(𝑡) =
𝑠𝑖𝑛 𝑡 . 
Solution: 

From the Eq. (14), optimal selection auxiliary linear operator the 

equation is represented as follows: 

 

𝐿1𝑥(𝑡): 𝐷∗
𝛼𝑥(𝑡) +  𝑥(𝑡) = 𝑦(𝑡) − 𝑠𝑖𝑛 𝑡.  

 

Therefore ∅(𝑣𝑖
𝑘) is defined as:  

 

∅(𝑣1
𝑘 , 𝑣2

𝑘) =∫ 𝑢(𝑡 − 𝜏)[
𝑡

0
𝑣2
𝑘 − 𝑠𝑖𝑛 𝑡]𝑑𝜏                                      (15) 

 

Then, using Eq. (14), the Laplace Iteration Method with Lagrange 

Multiplier formulae in t-direction for the calculation of the ap-

proximate solution of Eq. (15) can be readily obtained as: 

 

𝑥𝑛+1(𝑡) = 𝑥0(𝑡) + ∫ [𝜆(𝜏)𝑢(𝑡 − 𝜏)(𝑦𝑛(𝜏) − 𝑠𝑖𝑛 𝑡)]𝑑𝜏
𝑡

0

𝑦𝑛+1(𝑡) = 𝑒
−𝑡 − 𝑥𝑛+1(𝑡) + 𝑠𝑖𝑛 𝑡 .

}        (5.2) 

 

Case 1: 𝜶 = 𝟏 

 

𝐿1𝑥(𝑡): 𝐷∗
1𝑥(𝑡) +  𝑥(𝑡) = 𝑦(𝑡) − 𝑠𝑖𝑛 𝑡.  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
𝛼𝑥(𝑡) +  𝑥(𝑡)] = 𝑠 + 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠+1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑒−𝑡  
 

𝑢(𝑡 − 𝜏) = 𝑒(𝜏−𝑡)  
 

Where the initial approximation must be satisfied by the following 

equations: 

 

𝐿1𝑥(𝑡) = 0, 𝑥(0) = 1.  
 

Therefore, it can be started by: 

 

𝑥0(𝑡) = 𝑣1
0 = 𝑒−𝑡  

 

𝑦0(𝑡) = 𝑣2
0 = 𝑠𝑖𝑛 𝑡.  

 

Accordingly, by Eq. (5.2) the higher order approximation of the 

exact solution can be obtained as follows: 

 

𝑥1(𝑡) = ∑ 𝑣1
𝑘(𝑡)1

𝑖=0 = 𝑒−𝑡  
 

𝑦1(𝑡) = ∑ 𝑣2
𝑘(𝑡)1

𝑖=0 = 𝑠𝑖𝑛 𝑡  
 

The remaining approximations 𝑥𝑛 = 0, 𝑦𝑛 = 0, 𝑛 > 1  can be 

completely determined such that each term will be determined 

using the prevous term: thus, the exact solution is as follows: 

 

𝑥(𝑡) = 𝑙𝑖𝑚𝑝→∞ ∑ 𝑣1
𝑘(𝑡)

𝑝
𝑖=0 = 𝑒−𝑡  

 

𝑦(𝑡) = 𝑙𝑖𝑚𝑝→∞ ∑ 𝑣2
𝑘(𝑡)

𝑝
𝑖=0 = 𝑠𝑖𝑛 𝑡  

Case 2: 𝛼 = 0.5 

 

𝐿1𝑥(𝑡): 𝐷∗
0.5𝑥(𝑡) +  𝑥(𝑡) = 𝑦(𝑡) − 𝑠𝑖𝑛 𝑡.  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
𝑜.5𝑥(𝑡) +  𝑥(𝑡)] = 𝑠0.5 + 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠0.5+1
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⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑡−0.5∑
(−√𝑡)𝑘

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0   

 

Where the initial approximation must be satisfied by the following 

equations: 

 

𝐿1𝑥(𝑡) = 0, 𝑥(0) = 1. 
 

Therefore, it can be started by: 

 

𝑥0(𝑡) = 𝑣1
0 = 𝐸1

2
,1
(−√𝑡)= ∑

(−√𝑡)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0  

 

𝑦0(𝑡) = 𝑣2
0 = 𝑒−𝑡 −∑

(−√𝑡)
𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 + 𝑠𝑖𝑛 𝑡  

 

Accordingly, by Eq. (5.2) the higher order approximation of the 

exact solution can be obtained as follows: 

 

𝑥1(𝑡) = ∑ 𝑣1
𝑘(𝑡)1

𝑖=0 = ∑
(−√𝑡)

𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 + ∫ (∑

(−1)𝜏
𝑘
2

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

𝑡

0
((𝑡 −

𝜏)−0.5∑
(−1)𝑘(𝑡−𝜏)

𝑘
2

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0 )(𝑒−𝜏 − ∑

(−√𝑡)
𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )𝑑𝜏  

 

𝑦1(𝑡) =

∑ 𝑣2
𝑘(𝑡) = 𝑒−𝑡1

𝑖=0 − ∑
(−√𝑡)

𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 + ∫ (∑

(−1)𝜏
𝑘
2

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

𝑡

0
((𝑡 −

𝜏)−0.5∑
(−1)𝑘(𝑡−𝜏)

𝑘
2

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0 )(𝑒−𝜏 − ∑

(−√𝑡)
𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )𝑑𝜏 + 𝑠𝑖𝑛 𝑡  

 

Case 3: 𝛼 = 0.75 

 

𝐿1𝑥(𝑡): 𝐷∗
0.75𝑥(𝑡) +  𝑥(𝑡) = 𝑦(𝑡) − 𝑠𝑖𝑛 𝑡. 

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
𝑜7.5𝑥(𝑡) +  𝑥(𝑡)] = 𝑠0.5 + 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠0.75+1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑡−0.25∑
(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+
3

4
)

∞
𝑘=0   

 

Where the initial approximation must be satisfied by the following 

equations: 

 

𝐿1𝑥(𝑡) = 0, 𝑥(0) = 1.  
 

Therefore, it can be started by: 

 

𝑥0(𝑡) = 𝑣1
0 = 𝐸3

4
,1
(−𝑡𝑜.75)= ∑

(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0  

 

𝑦0(𝑡) = 𝑣2
0 = 𝑒−𝑡 − ∑

(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 + 𝑠𝑖𝑛 𝑡  

 

Accordingly, by Eq. (5.2) the higher order approximation of the 

exact solution can be obtained as follows: 

 

𝑥1(𝑡) = ∑ 𝑣1
𝑘(𝑡)1

𝑖=0 =

 ∑
(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 +

∫ ( ∑
(−1)(𝜏𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 )

𝑡

0
((𝑡 − 𝜏)−0.25  ∑

(−(𝑡−𝜏)𝑜.75)𝑘

𝛤(
3𝑘

4
+
3

4
)

∞
𝑘=0 ) (𝑒−𝜏 −

 ∑
(−𝜏𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 )𝑑𝜏  

 

𝑦1(𝑡) =

∑ 𝑣2
𝑘(𝑡) = 𝑒−𝑡1

𝑖=0 − ∑
(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 − ∫ ( ∑

(−1)(𝜏𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 )

𝑡

0
((𝑡 −

𝜏)−0.25  ∑
(−(𝑡−𝜏)𝑜.75)𝑘

𝛤(
3𝑘

4
+
3

4
)

∞
𝑘=0 )(𝑒−𝜏 − ∑

(−𝜏𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 )𝑑𝜏 + 𝑠𝑖𝑛 𝑡  

 
Table 1: Numerical Results of the Solution in Example 5.1 

T 
x1 

𝛼 = 0.5 

x1 

𝛼 = 0.75 

x1 

𝛼 = 1 
Exact solution 

0 1 1 1 1 

0.1 0.743 0.828 0.9048374 0.9048374 
0.2 0.695 0.742 0.8187308 0.8187308 

0.3 0.682 0.683 0.7408182 0.7408182 

0.4 0.576 0.643 0.6703201 0.6703201 
0.5 0.508 0.557 0.6065307 0.6065307 

0.6 0.472 0.52 0.5488116 0.5488116 

0.7 0.315 0.432 0.41965853 0.41965853 

0.8 0.252 0.44 0.449329 0.449329 

0.9 0.187 0.327 0.4065697 0.4065697 

1 0.119 0.272 0.3678794 0.3678794 

 

Table 1 shows the approximate solutions for Eq. (5.2) obtained for 

different values of 𝛼 using our method. The results are in good 

agreement with the results of the exact solutions. 

 

 
Fig. 1: Results for Example 1. 

 

Example 2: consider the following system of nonlinear fractional 

order differential –algebraic equations [11] 

 

𝐷∗
𝛼𝑥(𝑡) −  𝑥(𝑡) + 𝑧(𝑡)𝑥(𝑡) = 1

𝐷∗
𝛼𝑧(𝑡) +  𝑧(𝑡) − 𝑦(𝑡) + 𝑥2(𝑡) = 0

 𝑦(𝑡) − 𝑥2(𝑡) = 0, 𝑡 ∈ [𝑜, 1], 0 < 𝛼 ≤ 1

}                                (5.3) 

 

Subject to initial conditions x (0) = y (0) = z (0) = 10. For the spe-

cial case of 𝛼 = 1, we have analytical solution (𝑡) = 𝑒𝑡 , 𝑦(𝑡) =
𝑒2𝑡 ,and 𝑧(𝑡) = 𝑒−𝑡. 
Solution: 

From the Eq. (5.3), optimal selection auxiliary linear operator the 

equation is represented as follows: 

 

𝐿1𝑥(𝑡): 𝐷∗
𝛼𝑥(𝑡) −  𝑥(𝑡) = 1 − 𝑧(𝑡)𝑥(𝑡) 

 

𝐿2𝑧(𝑡): 𝐷∗
𝛼𝑧(𝑡) +  𝑧(𝑡) = 𝑦(𝑡) − 𝑥2(𝑡)  

 

Therefore ∅(𝑣𝑖
𝑘) is defined as:  

∅1(𝑣1
𝑘 , 𝑣2

𝑘 , 𝑣3
𝑘)  = ∫ 𝑢(𝑡 − 𝜏)[

𝑡

0
1 − 𝑣2

𝑘𝑣1
𝑘]𝑑𝜏

∅2(𝑣1
𝑘 , 𝑣2

𝑘 , 𝑣3
𝑘)  = ∫ 𝑢(𝑡 − 𝜏)[

𝑡

0
𝑣3−
𝑘 𝑣1

𝑘]𝑑𝜏 
}                          (5.4) 

 

Then, using Eq. (5.4), the Laplace Iteration Method with Lagrange 

Multiplier formulae in t-direction for the calculation of the ap-

proximate solution of Eq. (5.3) can be readily obtained as: 
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𝑥𝑛+1(𝑡) = 𝑥0(𝑡)

+∫ [𝜆(𝜏)𝑢(𝑡 − 𝜏)(1 − 𝑧𝑛(𝜏)𝑥𝑛(𝜏)]𝑑𝜏,
𝑡

0

𝑧𝑛+1(𝑡) = 𝑧0(𝑡)

+∫ [𝜆(𝜏)𝑢(𝑡 − 𝜏)(𝑦𝑛(𝜏) − 𝑥𝑛
2(𝜏)]𝑑𝜏,

𝑡

0

𝑦𝑛+1 = 𝑥𝑛+1
2 (𝑡) }

 
 

 
 

                           (5.5) 

 

Case 1: 𝛼 = 1 

 

𝐿1𝑥(𝑡): 𝐷∗
1𝑥(𝑡) −  𝑥(𝑡) = 1 − 𝑧(𝑡)𝑥(𝑡)  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
1𝑥(𝑡) −  𝑥(𝑡)] = 𝑠 − 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠−1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑒𝑡  
 

𝑢(𝑡 − 𝜏) = 𝑒(𝑡−𝜏)  
 

And  

 

𝐿2𝑧(𝑡): 𝐷∗
1𝑧(𝑡) +  𝑧(𝑡) = 𝑦(𝑡) − 𝑥2(𝑡)  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
1𝑧(𝑡) + 𝑧(𝑡)] = 𝑠 + 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠+1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑒−𝑡  
 

𝑢(𝑡 − 𝜏) = 𝑒(𝜏−𝑡)  
 

Where the initial approximation must be satisfied by the following 

equations: 

 

𝐿1𝑥(𝑡) = 0, 𝑥(0) = 1 ⟹ 𝑥0(𝑡) = 𝑣1
0 = 𝑒𝑡  

 

𝐿2𝑧(𝑡) = 0, 𝑧(0) = 1 ⟹ 𝑧0(𝑡) = 𝑣2
0 = 𝑒−𝑡  

 

𝑦0(𝑡) = 𝑣3
0 = 𝑒2𝑡  

 

Accordingly, by Eq. (5.5) the higher order approximation of the 

exact solution can be obtained as follows: 

 

𝑥1(𝑡) = ∑ 𝑣1
𝑘(𝑡)1

𝑖=0 = 𝑒𝑡  
 

𝑧1(𝑡) = ∑ 𝑣2
𝑘(𝑡)1

𝑖=0 = 𝑒−𝑡  
 

The remaining approximations 𝑥𝑛 = 0, 𝑧𝑛 = 0, 𝑛 > 1  can be 

completely determined such that each term will be determined 

using the prevous term: thus, the exact solution is as follows: 

 

𝑥(𝑡) = 𝑙𝑖𝑚𝑝→∞ ∑ 𝑣1
𝑘(𝑡)

𝑝
𝑖=0 = 𝑒−𝑡  

 

𝑧(𝑡) = 𝑙𝑖𝑚𝑝→∞ ∑ 𝑣2
𝑘(𝑡)

𝑝
𝑖=0 = 𝑒𝑡  

 

𝑦(𝑡) = 𝑙𝑖𝑚𝑝→∞ ∑ 𝑣3
𝑘(𝑡)

𝑝
𝑖=0 = 𝑒2𝑡  

 

Case 1: 𝛼 = 0.5 

 

𝐿1𝑥(𝑡): 𝐷∗
0.5𝑥(𝑡) −  𝑥(𝑡) = 1 − 𝑧(𝑡)𝑥(𝑡)  

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
𝑜.5𝑥(𝑡) −  𝑥(𝑡)] = 𝑠0.5 − 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠0.5−1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑡−0.5∑
(√𝑡)𝑘

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0   

 

And  

 

𝐿2𝑧(𝑡): 𝐷∗
0.5𝑧(𝑡) +  𝑧(𝑡) = 𝑦(𝑡) − 𝑥2(𝑡)  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
0.5𝑧(𝑡) + 𝑧(𝑡)] = 𝑠0.5 + 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠0.5+1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑡−0.5∑
(−√𝑡)𝑘

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0   

 

Where the initial approximation must be satisfied by the following 

equations: 

 

𝐿1𝑥(𝑡) = 0, 𝑥(0) = 1 ⟹ 𝑥0(𝑡) = 𝑣1
0 = 𝐸1

2
,1
(√𝑡)= ∑

(√𝑡)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0  

 

𝐿2𝑧(𝑡) = 0, 𝑧(0) = 1 ⟹ 𝑧0(𝑡) = 𝑣2
0 = 𝐸1

2
,1
(−√𝑡)= ∑

(−√𝑡)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0  

 

𝑦0(𝑡) = 𝑣3
0 = (∑

(√𝑡)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

2

  

 

Accordingly, by Eq. (5.5) the higher order approximation of the 

exact solution can be obtained as follows: 

 

𝑥1(𝑡) = ∑ 𝑣1
𝑘(𝑡)1

𝑖=0 = ∑
(√𝑡)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 + ∫ (∑

((−1)𝑘+1𝜏
𝑘
2

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

𝑡

0
((𝑡 −

𝜏)−0.5∑
(−1)𝑘(𝑡−𝜏)

𝑘
2

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0 )(1 − (∑

(√𝜏)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )∑

(−√𝜏)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )𝑑𝜏  

 

𝑧1(𝑡) = ∑ 𝑣2
𝑘(𝑡)1

𝑖=0 = ∑
(−√𝑡)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 + ∫ (∑

(−1)𝜏
𝑘
2

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

𝑡

0
((𝑡 −

𝜏)−0.5∑
(−1)𝑘(𝜏−𝑡)

𝑘
2

𝛤(
𝑘

2
+
1

2
)

∞
𝑘=0 )((∑

(√𝜏)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

2

− (∑
(√𝜏)𝑘

𝛤(
𝑘

2
+1)

∞
𝑘=0 )

2

)𝑑𝜏  

 

𝑦1(𝑡) = ∑ 𝑣3
𝑘(𝑡) = (𝑥1(𝑡))

21
𝑖=0   

 

Case 1: 𝛼 = 0.75 

 

𝐿1𝑥(𝑡): 𝐷∗
0.75𝑥(𝑡) −  𝑥(𝑡) = 1 − 𝑧(𝑡)𝑥(𝑡)  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
𝑜.75𝑥(𝑡) −  𝑥(𝑡)] = 𝑠0.5 − 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠0.75−1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑡−0.25∑
(𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+
3

4
)

∞
𝑘=0   

And  

𝐿2𝑧(𝑡): 𝐷∗
0.75𝑧(𝑡) +  𝑧(𝑡) = 𝑦(𝑡) − 𝑥2(𝑡)  

 

⟹ 𝑝(𝑠) = ℒ[ 𝐷∗
07.5𝑧(𝑡) + 𝑧(𝑡)] = 𝑠0.5 + 1  

 

⟹𝜓(𝑠) =
1

𝑝(𝑠)
=

1

𝑠0.75+1
  

 

⟹ 𝑢(𝑡) = ℒ−1[𝜓(𝑠)] = 𝑡−0.25∑
(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+
3

4
)

∞
𝑘=0   

 

Where the initial approximation must be satisfied by the following 

equations: 

 

𝐿1𝑥(𝑡) = 0, 𝑥(0) = 1 ⟹ 𝑥0(𝑡) = 𝑣1
0 = 𝐸3

4
,1
(𝑡𝑜.75)= ∑

(𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0  

 

𝐿2𝑧(𝑡) = 0, 𝑧(0) = 1 ⟹ 𝑧0(𝑡) = 𝑣2
0 = 𝐸3

4
,1
(−𝑡𝑜.75)  
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= ∑
(−𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0  

 

𝑦0(𝑡) = 𝑣3
0 = (∑

(𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 )

2

  

 

Accordingly, by Eq. (5.5) the higher order approximation of the 

exact solution can be obtained as follows: 

 

𝑥1(𝑡) = ∑ 𝑣1
𝑘(𝑡)1

𝑖=0 =

 ∑
(𝑡𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 +

∫ ( ∑
(−1)𝑘+1(𝜏𝑜.75)𝑘

𝛤(
3𝑘

4
+1)

∞
𝑘=0 )

𝑡

0
((𝜏 − 𝑡)−0.25  ∑

((t−τ)o.75)k

Γ(
3k

4
+
3

4
)

∞
𝑘=0 ) (1 −

(∑
(τo.75)k

Γ(
3k

4
+1)

∞
k=0 ) ∑

(−τo.75)k

Γ(
3k

4
+1)

∞
k=0 )dτ  

 

z1(t) = ∑ v2
k(t)1

i=0 =  ∑
(τo.75)k

Γ(
3k

4
+1)

∞
k=0 + ∫ ( ∑

(−1)(τo.75)k

Γ(
3k

4
+1)

∞
k=0 )

t

0
((t −

τ)−0.25  ∑
(−τo.75)k

Γ(
3k

4
+
3

4
)

∞
k=0 )((∑

(τo.75)k

Γ(
3k

4
+1)

∞
k=0 )

2

− (∑
(τo.75)k

Γ(
3k

4
+1)

∞
k=0 )

2

)dτ  

 

y1(t) = ∑ v3
k(t) = (x1(t))

21
i=0   

 
Table 2: Numerical Results of the Solution in Example 5.2 

T 
x1 

α = 0.5 

x1 

α = 0.75 

x1 

α = 1 
Exact solution 

0 1 1 1 1 

0.1 1.357 1.193 1.1051709 1.1051709 

0.2 1.505 1.325 1.2214027 1.2214027 

0.3 1.618 1.441 1.3498588 1.3498588 
0.4 1.714 1.547 1.4918246 1.4918246 

0.5 2.564 1.913 1.6487212 1.6487212 

0.6 2.824 2.091 1.8221188 1.8221188 
0.7 3.085 2.273 2.0137527 2.0137527 

0.8 3.348 2.495 2.2255409 2.2255409 

0.9 2.97 2.648 2.4596031 2.4596031 
1 3.128 2.84 2.7182818 2.7182818 

 

Table 2 shows the approximate solutions for Eq. (5.5) obtained for 

different values of α using our method. The results are in good 

agreement with the results of the exact solutions. 

 

 
Fig. 2: Results for Example 2. 

6. Discussion 

In this study, the present method (LLIM) has been extended to 

solve fractional order differential-algebraic equations (FDAEs). 

Two examples are given to demonstrate to powerfulness of the 

method. The results obtained by the method are in good agreement 

with the exact solution. The study shows that the method is a reli-

able technique to solve fractional differential-algebraic equations, 

and often notable advantages from the points of applicability, 

computational costs, and accuracy. 
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