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Abstract 

 

In this paper, a numerical method for solving Linear-quadratic optimal control problems (LQPs) is presented. A method 

is provided for approximating the system dynamics, boundary conditions, and the performance index. The control and 

state variables are approximated by Legendre orthogonal polynomials. The method is based on using orthogonality of 

Legendre polynomials to get rid of the integration of the performance index. The problem is then reduced to a 

constrained optimization problem which is solved by Genetic Algorithms (GAs). Numerical results and comparisons are 

given at the end of this paper. 
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1 Introduction 

Optimal control problems (OCPs) pose many problems in engineering which have a large number of applications in 

many different fields, e.g., mechanical system [2], automotive vehicle design [8] and manufacturing process [6]. Linear-

quadratic optimal control problems (LQPs) are a class of OCPs and there is an extensive literature about them [11]. The 

general characterizations of their solutions and useful numerical algorithms to compute them are now available, 

allowing models with fairly large state spaces, complicated dynamic linkages, and a range of alternative informational 

assumptions to be handled [5]. In the current study, a review of many papers which give methods for solving LQPs is 

provided. For example, spectral method [10], time-domain decomposition iterative method [7], and Bézier control 

points [4]. On the other hand, a substantial literature has discussed the useful notion of orthonormal polynomials such as 

the use of Legendre polynomials which we have recently dealt with to looking for formulas of Gaussian quadrature. 

The aim of this paper is to present a new algorithm for solving LQPs. The proposed algorithm is based on reducing the 

given OCP to a constrained optimization problem which can be solved by using GAs. This technique aims to use the 

orthogonal property for Legendre polynomial to eliminate the integration in the performance index without using 

operational matrix of integration. In order to eliminate the integral operations, the algorithm expands the solution of 

state      variable and control variable      by a finite series of Legendre polynomials up to degree  .  

The main advantage for using a Legendre series is the equation error decreases very fast with increasing approximation 

degree   [14]. Thus, by using few terms of these series, the   -norm of the equation error will presumably become very 

small. 

Our problem is described in   by the dynamical linear system  
 

                                        (1)         (1) 

 

The boundary conditions are: 

 

                               (2) 
 

The performance measure to be minimized is: 

 

                          
  

  
            (3) 
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where       ,       .  

Essentially, the LQP formulation (1)-(3) translates the difficulty of the classical control problems, where specifications 

are typically given in terms of settling times, stability and phase margins, into the choice of the coefficients of the cost 

matrices. The cost matrix coefficients are approximated in this example, by depending on the observed performance, 

which is based on Legendre polynomials. Once these matrices are chosen, the approximation of the performance   is 

free of integration. In practice, GA procedure is typically followed where the properties of the synthesized LQPs are 

approximated with respect to the given coefficients. 

The organization of this paper is as follows: In section 2, we describe the basic formulation of the quadrature and 

Legendre orthogonal polynomials. In section 3, the Legendre coefficients method for LQPs is presented. We analyze 

the error upper bounds of the method in section 4. In section 5, GA is presented to solve the resulted optimization 

problem. Numerical examples are presented in section 6. Finally, conclusions are submitted in section 7. 

 

2 Quadrature and Legendre orthogonal polynomials  

In this section, some results concerning the Legendre polynomials are introduced. Consider the Legendre Gauss–Lobito 

(LGL) node points. There is no need for additional nodes with LGL since the endpoint −1 and +1 are collocation points. 

That is,                 , for      ,      and          ,             are the zeros of    
    , 

where   
    , is the derivative of the nth order Legendre polynomial      , i.e. 

 

         
    

                  , 
 

where         
                              

The three terms of recursive formula are: 

 

                                           
    

   
        

 

   
                                   

 

with initials          and        . The orthogonality condition is 

 

                                                             

 

    
        

                 

 

 

  

                                            

 

Suppose that           and                         be the set of Legendre polynomial, 

 

  span             , 
 

and   be an arbitrary element in  . Since   is a finite-dimensional vector space,   has the unique best approximation 

out of   such that for every     there exist       
 

                 

where               

On the other hand, for       , there exist unique coefficients            such that 

 

                   
               (5) 

 

where                          and the coefficients    are given by 

    
    

 
     

 

  
                                (6) 

 

Now, consider the following assumptions to obtain error estimates: 

(i) The function   is Lipschitz with respect to   with Lipschitz constant    
 , 

i.e. 

                         
                 (7) 
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for every        ,       and           . 
 

(ii) The function     : [-1,1]→   is satisfied in a Lipschitz condition with Lipschitz        constant    

 
                                              (8) 

           

(iii) The function   is jointly Lipchitz with respect to   and  , with Lipschitz constant      
, i.e.,  

 

                              
                        (9) 

for         ,       and           . 
 

(iv) Let 

     
         

  
                                           (10) 

 

Suppose that the set   of relevant values of      is defined as follows: 

                    
where 

                                   . 

 

The set of       relevant values of     is described generally in [1]. 

The Legendre coefficients method used in the next section consists of reducing the given LQPs to a set of algebraic 

equations. We expand the state      and control      variables with the Legendre orthonormal polynomials basis with 

unknown coefficients. At this moment, the performance index (3) and dynamical system (1) will be in terms of the 

unknown coefficients. 

 

3 Legendre coefficients method for LQP 

Consider LQP in equations (1)-(3). The state and control variables have been expand by the Legendre basis     , 

respectively, as follows:  

 

                           (11) 

 

                        (12) 

 

                       (13) 

where 

                           (14) 

 

                           (15) 

 

Also by using (5) and (6), we approximated the functions                and      by the Legendre basis as follows: 

 

                                       

 

                                        

where 

                                                           (16) 

 

                                                           (17) 

with, 
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       (19) 

for            



 

 

 
International Journal of Applied Mathematical Research 143 

 

 

 

By using equations (11), (12) and (17), the performance index   can be approximated as: 

 

                                                  
 

  
      (20) 

 

The dynamical system (1) is also approximated as follows: 

 

                               (21) 

 

The main reason for the use of Legendre orthogonal expansions is that it results in the simplification of the cost function 

 , this is due to the fact that the integral of the multiplication of non-identical orthogonal terms is zero. 

In the following three cases, we studied the integral elimination of performance index: 

 

Case 1: If                             , then the performance index (3) takes the form: 

      
 

    
   

 

 

   

   
   

where     is approximated value of performance index    due to the approximation of the state and control variables by 

Nth order Legendre polynomials. 

 

Case 2: If          and          , then the objective function (3) takes the form 
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Case 3: If           and          then the objective function (3) takes the form: 

 

                 

 

   

 

   

   
 

    
  

 

 

   

  

where 
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The algorithm that solves the LQP in equations (1)–(3) is shown in Table 1. 

 

4 Error estimation 

We denote the error in      by         . 

4.1   Error estimation for the derivative of Legendre polynomial 

The calculated error of the derivatives of Legendre polynomials can be obtained as follows: [12]  

    
 

 
         

      

              
  

       
 
   

  
 

 
 

                    

 

   

 

       
where    

 is the upper bound error for of the differentiation matrix   in terms of Gram determinant                . 

[3]. 

 

4.2   Error estimation in the dynamic system  
 

Assume (      ,    ) to be the space of all continuous functions with the norm: 
                )           . 

Let  

 

                                                        
      (22) 

 

Under the above hypothesis in (7)-(10), we have the following theorem. 

 

Theorem 4.1: If the conditions (7)-(10) are satisfied, then for every       , the error estimate in Eq. (1) satisfies: 

            

where  

                              
   

                                   
         

Proof:  Let            , we have 

 

                                                 
 

                                                              

 

                                                             

 

                                                      

 

                                                              

 

      
               

         

                                                                                                          
 

for sufficiently small    the proof is complete.  

 

4.3   Error estimation of objective functional 
 

Now for the purpose of error estimation in Eq. (3), we suppose the following conditions: 

(i) Let 

      
         

  
                               (23) 

(ii) Let  
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(iii)  

                                                         
     (24) 

 

(iv) The function   is jointly Lipschitz with respect to   and  , with Lipschitz constant      
 , 

(v)  
                              

                        (25) 

 

For every                  and           . 
 

Theorem 4.2: If the conditions (23)–(25) are satisfied, then for every       , the error estimation in Eq. (20) satisfies: 

            

where  

                             
    

                                   
         

 

Proof: Consider: 

                                       

                                        

 

  

    

                                                

 

  

                                         

 

  

  

                                        

 

  

    

                             
               

               

 

  

   

                                
for sufficiently small    the proof is complete.  

 

5 Implementation of genetic solver for LQP 

Genetic Algorithm (GA) is a heuristic search technique based on the evolutionary ideas of natural selection. It is usually 

used to solve optimization problem of the form: 

                        

Subject to    .                                                                       (26) 

 

The function         is the objective function and the set      is the feasible set of (26). Based on the 

description of the function   and the feasible set  , the problem (26) can be classified as linear, quadratic, non-linear, 

semi-infinite, semi-definite, multiple-objective, discrete optimization problem etc. 

The algorithm to solve a problem must have five components [9, 13]: 

 

1. A genetic representation of solutions to the problem, 

2. A way to create an initial population of solutions, 

3. An evaluation function that plays the role of the environment, rating solutions in terms of their “fitness”,  

4. Genetic operators that alter the genetic composition of children during reproduction,  

5. Values for the parameters that the GA use (population size, probabilities of applying genetic operators, etc.).  

 

Table 2 shows the code of the general GA algorithm. 

In GA, there are many parameters and operators that have to be adjusted. The following parameters should be carefully 

chosen: namely, Population type, Population size, Crossover rate, Mutation rate, Selection operator and Crossover 

operator. The parameters adopted in the implementation of the proposed algorithm are listed in Table 3. 
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Table 1. LQP algorithm 

LQP algorithm 

 

       Step (0) Initialization: Set    , choose  , , . 

       Step (1) Use the approximation of the state variable      and the control     

                    variable      as in equations (11)-(13).  

       Step (2) Eliminate the integration the performance index as in cases 1-3.        

       Step (3) Solve the constrained optimization problem by GA. 

       Step (4) Stop if : 
           , 

     Otherwise,       and go to Step (3). 

 

 
Table 2. GA algorithm 

GA algorithm 

      

     Generate an initial population; 

     Evaluate fitness of individuals in the population; 

     Do: 

         Select parents from population; 

         Recombine (mate(crossover and mutation operators)) parents to    

         produce children; 

         Evaluate fitness of  the children; 

         Replace some or all of the population by the children; 

        while a satisfactory solution has been found. 

 

 
Table 3.The algorithm parameters. 

Population type                                                                                                                                        double Vector 

Population size                                                                                                                                                 100 

Crossover rate                                                                                                                                                    0.9 

Mutation rate                                                                                                                                                      0.1 

Selection operator                                                                                                                                   Stochastic uniform 

Crossover operator                                                                                                                                          Scattered 

 

6 Numerical examples 

In this section, we apply the proposed method to solve LQPs. Numerical results of these examples are given to clarify 

the accuracy of the proposed method. All computations were carried out by MATLAB 2010a. 

 

Example (1): Consider the following LQP:  

           Minimize  

  
 

 
                

 

  

 

                           Subject to  

              and 

       
    

      
   

By applying the Legendre coefficients method, the problem can be converted to the following constrained optimization 

problem: Minimize 

   
 

 
 

 

    
   

    
  

 

   

 

                           Subject to  
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and                                                          

       
    

      
   

Legendre coefficients method gives the following numerical solution: 

                                        
                                  

 

  
Fig.1: The state      and control      variables for Example (1) with     

 
Table 4: Results provided by Penalty method and our approach of Example (1) 

N 
No. of 

unknowns 

  calculated by GA method   calculated by 

Penalty method No. of iteration   No.  

4 10 

50 5.4002 

5.4048 
100 5.3990 

500 5.3990 

1000 5.3988 

6 14 

50 5.4002 

5.4048 
100 5.3991 

500 5.3990 

1000 5.3989 

8 18 

50 5.4004 

5.4048 
100 5.3996 

500 5.3989 

1000 5.3990 

 

In Table 4, the Legendre coefficients method with GA is applied to Example (1) with different values of N. It is obvious 

that with increase in the number of the iteration our approach has a successful rate of minimization more than the 

Penalty method. Finally, Fig.1 present the optimal states and control variables. 

Example (2) Consider the following LQP:  

             Minimize  

  
 

 
    

             

 

  

 

Subject to  

                  
                       

and                                                         

                                                                                       
By applying the procedure described here, the problem can be converted to the following constrained optimization 

problem:  

Minimize   
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                           Subject to  

        

 

   

  
         

 

   

                 

           

 

   

  
         

 

   

          

 

   

                 

and                                       

                                                                               
 

By using Legendre coefficients method, we get: 

 

                                             
                                  
                                   

 

 

  
Fig.2: Values of states      and control      variables for Example(2) with     

 

Table 5: Results provided by Penalty method and our approach of Example (2) 

N 
No. of 

unknowns 

  calculated by GA method   calculated by 

Penalty method No. of iteration    

4 10 

50 8.0460 

8.0514 
100 8.0454 

500 8.0434 

1000 8.0434 

6 14 

50 8.0486 

8.0514 
100 8.0436 

500 8.04340 

1000 8.04334 

8 18 

50 8.0459 

8.0514 
100 8.0449 

500 8.0439 

1000 8.0439 

 

In Table 5, we note that using the GA reaches a near-optimal solution when a reasonable number of iterations increase. 

Fig.2 shows the values of states and control variables with    . 

 

Example (3): Consider the following LQP:  

 

Minimize  
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Subject to  

                     and 

           
 

By applying the Legendre coefficients method, the problem can be converted to the following constrained optimization 

problem: Minimize 

 

   
 

 
 

 

    
   

    
  

 

   

 

Subject to  

                                          
 

 

   

            

 

   

          

 

   

                         

and 

           
 

Legendre coefficients method gives the following numerical solution: 

                                        
                                          

 

  
Fig. 3: The state      and control      variables for Example (3) with     

 
Table 6: Results provided by Penalty method and our approach of Example (3) 

N 
No. of 

unknowns 

  calculated by GA method   calculated by 

Penalty method No. of iteration    

4 10 

50 0.2795 

0.2802 
100 0.2794 

500 0.2794 

1000 0.2794 

6 14 

50 0.2793 

0.2802 
100 3972.0 

500 0.2793 

1000 0.2793 

8 18 

50 0.2796 

0.2802 
100 0.2794 

500 0.2793 

1000 0.2793 

 

In Table 6, we obvious that with increasing the number of the iteration our approach has a successful rate of 

minimization more than the Penalty method. Fig.3 present the optimal states and control variables. 
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7 Conclusion 

A numerical method for solving LQPs with terminal state constraints on the states and controls has been presented. The 

method is based on the orthogonality property of Legendre approximations. Therefore, our method prevents the need 

for solving the backward integration of the matrix Riccati differential equation or inverting ill-conditioned transition 

matrices. The method replaces the constrained OCP by a quadratic programming which is solved by using GAs. GAs 

have a distinguishing feature which makes them very effective when considering linear optimization. GAs can be 

especially effective when solving highly linear models. On the other hand GAs can also be used to provide quick, near 

global-optimal solution. To sum up, it is the final aim of the study to achieve the optimal strategy and optimal trajectory.  
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