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Abstract 
 

R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of 

the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the 

iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to 

obtain three common fixed point theorems for expansive type mappings. 
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Introduction 

 The metric fixed point theory plays an important role to detection 

many applications in other mathematical branches such as differ-

ential equation, operation research, mathematical economics frac-

tals, chaos. Different generalizations of the usual notion of a met-

ric space were defined by several mathematicians such as in 

Dolthinov [3], Czerwik [4], Branceciri [5], Naidu [6] and Huang 

and Zhang in [7],. Also G-metric space is of these generalizations 

which introduced by Mustafa and Sims [8]. For more details and 

results in G- metric space about fixed points, common fixed points 

and coincidence points or coupled (fixed point, common fixed 

points and coincidence points) for mappings satisfying various 

contractive conditions in co G-metric spaces , ordered G-metric 

spaces and G-cone metric spaces, such as see [9], [10], [11], [12], 

[13] and [14].  

On the other hand, as a generalization of metric space, K. Menger 

[15], introduced the concept of a probabilistic metric space (brief-

ly, PM-space) where the notion of distance is considered to be 

statistical or probabilistic. The definition of PM-space corresponds 

to conjuncture when we do not know exactly the distance between 

two points, but we know probabilities of possible values of this 

distance. The fundamental importance of PM- theory in probabil-

istic functional analysis due to its extensive applications in ran-

dom differential as well as random integral equations, for exam-

ple, the work due to chang and et al [16]. In the field of fixed 

point, Sehgal [17] presented an active study about the contraction 

mapping in PM-spaces. Segal and Bharucha-Reid [18] studied 

Banach's contraction theorem in complete Menger space. See also 

[18], [19], [9] and [20]. In [21], Hicks observed that interesting 

fixed point theorems for contraction mappings on a Menger spaces 

endowed with a triangular t – norm. Recently, the M. Janfada, A. 

Janfada and Z. Mollace [22] introduced the structure of probabilis-

tic G-metric spaces and Menger probabilistic G-metric spaces and 

showed some basic properties about these spaces and then proved 

some fixed point theorems in it. Abed and Luaibi [23] define a 

GPM-space and use it to show that proved some fixed point theo-

rem and common fixed point results for convers commuting map-

pings and weakly compatible mappings in G- Menger space by 

using implicit conditions. 

This paper is included some results about unique common fixed 

points in probabilistic G-Menger metric space in two various situ-

ations. 

1. Preliminaries 

We be gain with same basic definitions and facts. 

 

Definition 1.1: [8] Let X be a nonempty set and G: X × X × X → 

[0, +∞) be a function for all x, y, z, a in X satisfying the following 

conditions:  

1) G(x, y, z) = 0 ⇔ x = y = z  

2)  0 < G(x, x, y) with x ≠ y  

3) G(x, x, y) ≤ G(x, y, z) with y ≠z  

4) G(x, y, z) = G(p(x, z, y)), p(x, y, z) is a permutation of x, y, z 

5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) . 

Then the ordered pair (X, G) is called a generalized metric space 

or G- metric space. 

 

Definition 1.2: [8] Let (X, G) be a G- metric space. The sequence 

{𝑥𝑛} is called. 

 

1) A G-Cauchy if, ∀ε > 0, there is k ∈ N such that for all posi-

tive integers n, m, l ≥ k, G(xn , xm, xl) < ε . 

2) A G-convergent to x ∈ X if, ∀ε > 0, there is k ∈N such that 

for all n, m ≥ k, G(x, xn, xm) < ε . 

Also, (X, G) is said to be complete G-metric space if every G- 

Cauchy sequence in X is G- convergent in G. 

 

Definition 1.3: [24] the mapping Δ: [0, 1] × [0, 1] → [0, 1], is 

called a continuous t- norm if Δ satisfies the following conditions. 

 

a) Δ (r, 1) = r for all r in [0, 1];  

b) Δ(r, s) = Δ(s, r), for every r, s ∈ [0,1]; 

c) Δ(a, c) ≥ Δ(b, d), whenever a ≥ b and c ≥ d, for each a, b, c, 

d in [0,1]; 

d) Δ is continuous; 

e) (e) Δ (r, Δ(s, c)) = Δ (Δ (r, s), c), (r, s, c ∈ [0, 1] ). 

Example 1.4: [24] The following are the four basic t-norms. 

1) The minimum: ΔM(r, s) = min{r, s}. 
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2) The product: ΔP (r, s) = r s. 

3) The Lukasiewicz: ΔL(r, s) = max{r + s − 1, 0}. 

4) The weakest : 

 

ΔD(r, s) = {
min{r, s} if max{r, s} = 1,

0 otherwise.
                                      (1. 1) 

 

In respect of the above mentioned t-norms, we have the following 

ordering: 

 

                     ΔD < ΔL < ΔP < ΔM.                                            (1. 2) 

 

Here, we give anther version of the definition of probabilistic G-

metric space. Our idea depend on the definition in usual G-metric 

which different from the definition in [22]: 

Definition 1.5: A Menger Probabilistic G- Metric space (briefly, 

Menger PGM-space) is a triple(X, G, Δ) , where X is a non-empty 

set, Δ is a continuous t- norm , and G is a mapping from X × X × 

X into L such that , if Gx,y,z denotes the value of G at the triple (x, 

y, z) , the following conditions hold: for all x, y, z in X , 

 

1) Gx,y,z( t ) < 1 for all t > 0 if and only if x ≠ y; 

 

2) Gx,y,z( t ) = 1 for all t > 0 if and only if x = y = z; 

 

3) Gx,x,y(t ) ≥ Gx,y,z( t )  

 

4) Gx,y,z(t ) = Gy,z,x( t ) = Gz,x,y( t ) …, 

 

5) Gx,y,z( t + s ) ≥ Δ (Gx,a,a( t ), Ga,y,z( s ) ) for all x, y, z, a ∈X 

and t , s ≥ 0 , 

 

6) If Gx,a,a (t) = Ga,y,z( s ) = 1 then Gx,y,z( t + s ) = 1. 

 

Note that, when (X, G, Δ) satisfies the conditions 1,2,3,4 and 6 in 

definition (1.5) then it is called Probabilistic G- Metric space 

(briefly, PGM-space)  

 

Definition 1.6: [25] Let (X, G, Δ) be a Menger PGM-space. 

 

1) A sequence {xn} in X is said to be PG- convergent to x in X 

if, for every ε > 0 and λ > 0, there exists positive integer 

M(ε, λ) such that. 

 

                  Gx,xn,xm
 (ε) > 1 − λ whenever m, n ≥ M (ε, λ) . 

 

2) A sequence {xn} in X is called PG- Cauchy sequence if, for 

every ε > 0 and λ > 0, there exists positive integer M(ε, λ) 

such that 

 

               Gxn,xm,xl
 (ε) > 1 − λ whenever n, m, l ≥ M (ε, λ) . 

 

3) A Menger PM-space (X, G, Δ) is said to be complete if and 

only if every PG- Cauchy sequence in X is PG- convergent 

to a point in X. 

 

Definition 1.7: [25] A pair of maps T and S is called weakly com-

patible pair if they commute at coincidence points i.e., Tx = Sx 

implies TSx = STx. 

 

Definition 1.8: Self- mappings S and T of a Menger PGM-space 

(X , G, Δ) are said to be semi- compatible if 𝐺𝑆𝑇𝑥𝑛,𝑇𝑢,𝑇𝑢 (t) → 1 

for all t > 0, whenever { 𝑥𝑛 } is a sequence in X such that 

S𝑥𝑛,T𝑥𝑛→u for some u in X , as n→∞. 

 

It follows that the pair (S, T) is semi-compatible and Sy =Ty im-

ply STy =TSy by taking { xn} = y and u = Sy =Ty. 

2. Main results 

Firstly, the following lemmas are needed: 

 

Lemma 2.1: Let (X, G, ΔM) be a Menger PGM-space and{𝑥𝑛}be a 

sequence in X . If there exists a positive number, 0 < q < 1 and t > 

0 and ΔM = min  

 

Such that 

 

Gxn,xn+1,xm
 (q t) ≥ Gxn−1,xn,xm−1

 (t)                        (2.1) 

 

For all m ≥ n + 1, n = 1, 2, 3 . . .  

Then {xn} is a PG- Cauchy sequence in X. 

Proof: 

It follows from (2.1), 

 

Gxn,xn−1,xm
 ((1 − q)ε / 2q) ≥ Gxn−1,xn−2,xm−1

((1 − q)ε/ 2q2) 

 

                                         ≥… ≥ Gx2,x1,xm−n+2
 ((1 − q) ε / 2qn−1). 

 

Since 0 < q < 1, so for ε > 0 and λ > 0, there exists a positive inte-

ger K = M (ε, λ) such that 

 

Gxn,xn−1,xm
 ((1 − q)ε / 2q) > 1 – λ, for all n ≥ K.                       (2.2) 

 

It is sufficient to prove that for any positive integer p, 

 

Gxn,xn+p,xm
 (ε) ≥ 1 – λ, n ≥ K.                                       (2. 3) 

 

For p = 1, (2. 3) holds. Suppose that (2.1) holds for 1 < p ≤ k , then 

 

Gxn,xn+k+1,xm
 (ε) ≥ Gxn−1,xn+k,xm−1

 (ε/2) 

 

                          ≥ min {Gxn−1,xn,xn
 ((1 − q)ε / 2q), Gxn,xn+k,xm−1

(ε)} 

 

                         = min {Gxn,xn,xn−1
 ((1 − q)ε / 2q), Gxn,xn+k,xm−1

(ε)} 

 

                        ≥ min {Gxn,xn−1, xm
 ((1 − q)ε / 2q), Gxn,xn+k,xm−1

(ε)} 

 

                    [By (3) from definition (0.6.1)] 

 

                   > min {1 – λ , 1 −λ } = 1 –λ , n ≥ K . 

 

Hence (2. 3) holds for p = k + 1. Therefore, {xn } is a PG-Cauchy 

sequence. ∎ 

 

Lemma 2.3: Let (X, G, Δ) be a Menger PGM - space. If there 

exists k ∈ (0, 1) such that for x, y, z ∈ X, 𝐺𝑥,𝑦,𝑧 (k t) = 1 then x = y 

= z. 

 

From the definition of Menger PGM – space, the poof will be 

obviously. 

 

The first result: 

 

Theorem 2.4: Let T, S: X→X be a weakly compatible mappings 

on a Menger PGM - space (X, G, ΔM) with 

 

GSx,Sy,Sz (k t) ≤ GTx,Ty,Tz(t)                                   (2.4) 

 

For all x, y, z in X, k ˃ 1 and t > 0. Then T and S have a unique 

common fixed point, whenever T(X) ⊆ S(X) and T(X) or S(X) is 

complete. 

Proof: 

Let x0 ∈ X be an arbitrary point in X such that y0 = Sx0. Since 

T(X) ⊆ S(X), so we can choose a point x1 in X such that y1 = Tx0 

= Sx1 . 
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In general, choose xn+1 such that yn+1 = Txn = Sxn+1 , n = 0, 1, 2 

. . .  

 

Then from (2.4) 

 

Gyn−1,yn,ym−1
(k t ) = GSxn−1 ,Sxn ,Sxm−1

 (k t)  

 

                           ≤ GTxn−1 ,Txn , Txm−1
(t)  

 

                         = Gyn,yn+1,ym
(t). 

 

Then, Gyn,yn+1,ym
(q t) ≥ Gyn−1,yn,ym−1

(t), where q =1/k 

 

By Lemma (2.1), we get {yn} is a PG-Cauchy and hence conver-

gent. If we denote the limit by u, then 

 

limn→∞ Txn = limn→∞ Sxn = limn→∞ yn = u . 

 

Since S(X) is complete, there exists a point p ∈ X such that Sp = u 

. 

Now from (2.4) 

 

GSp,Sxn , Sxn
( k t ) ≤ GTp,Txn ,Txn

( t ) 

 

Taking limit as n → ∞ we have 

 

GSp,u,u(k t ) ≤ GTp,u,u(t), which implies that Tp = u. Therefore, Sp 

= Tp = u.  

 

Since S and T are weakly compatible, therefore, STp = TSp i.e., 

Su = Tu. 

 

Now we will prove that u is a fixed point of S and T . From (2.4) 

 

                                     GSu,Sxn ,Sxn
(k t) ≤ GTu,Txn ,Txn

(t ) 

 

Taking limit as n → ∞, we have 

 

                              GSu,u,u(k t ) ≤ GTu,u,u(t) 

 

Which implies that Tu = u. Hence Tu = Su = u . 

Now, suppose that u ≠w is also another common fixed point of S 

and T.  

Then from (2.4) 

 

GSu,Sw,Sw(k t ) ≤ GTu,Tw,Tw(t), this implies u = w. ∎ 

 

Proposition 2.5: If (S, T) is a semi-compatible pair of self- map-

pings in a Menger PGM – space(X, G, ΔM) and T is continuous 

then (S, T) is compatible. 

Proof:  

Consider a sequence {xn} in X such that{Sxn}→u and { Txn } 

→u . As T is continuous we get TS xn  →Tu. By semi-

compatibility of (S, T), we have GSTxn ,Tu ,Tu  (ε) → 1 for all ε > 0, 

i.e. for ε > 0 and λ > 0, there is an integer M (ε ,λ) such that , 

GSTxn ,Tu,Tu (ε /2) → 1-λ and , GTSxn ,Tu,Tu (ε /2) → 1−λ for all n ≥ 

M(ε ,λ). 

 

Now GSTxn,TSu,TSu (ε) > Δ { GTSxn,Tu,Tu(ε /2), GTu,TSxn,TSxn
 (ε /2)}  

 

                                 >Δ { GTSxn,Tu,Tu(ε /2), GTSxn,Tu,Tu (ε /2)} 

 

                                  > (1−λ, 1−λ) >1−λ . 

 

we get GSTxn,TSu,TSu (ε) → 1 for all ε > 0. 

Hence, the pair (S, T) is compatible. 

 

Theorem 2.6: Let (X, G, ΔM) be a complete Menger PGM - space 

with a probabilistic G- metric is symmetric and the mappings A, 

B, S and T: X →X mappings with  

 GAx,By,By (k) ≤ min {GSx,Sx,Ax (k /d), GTy,Ty,By (k /e), GSx,Ty,Ty (k 

/f)} 

 

For some k ∈ (0,1) and for all x ,y ∈ X with x ≠ y where β = 

min{d, e, f} >1. Then A , B, S and T have a unique common fixed 

point in X, if: (i) (A,S) is semi-compatible and (B,T) is weak 

compatible; (ii) T(X)⊆ A(X) and S(X)⊆ B(X); and (iii) (i) either 

A or S is continuous. 

Proof:  

Let x0∈ X, by condition (i) there exist x1, x2 ∈ X such that 

 

Tx0= Ax1 =  y0 ; Sx1 = Bx2= y1 . 

 

Inductively, we can construct sequences { xn} and { yn} in X such 

that 

 

Tx2n = Ax2n+1= y2n ; Sx2n+1 = Bx2n+2= y2n+1 

 

Now, 

 

Gy0,y1,y1
 (k) = GAx1,Bx2,Bx2

 (k)  

 

       ≤ min {GSx1,Sx1,Ax1
(k /d), GTx2,Tx2,Bx2

(k /e), GSx1,Tx2,Tx2
 (k /f)}  

 

      ≤ min{Gy1,y1,y0
 (k /d ), Gy2,y2,y1

 (k /e ), Gy1,y2,y2
 (k /f ) } 

 

      ≤ min{Gy0,y1,y1
 (k / β ), Gy1,y2,y2

 (k / β ), Gy1,y2,y2
 (k / β ) }, 

 

Where β = min{d , e, f} 

 

    ≤ min {Gy0,y1,y1
 (k / β ), Gy1,y2,y2

 (k / β ) }, 

 

    ≤ min {Gy1,y2,y2
 (k / β ) } = Gy1,y2,y2

 (k / β ) 

 

i.e. Gy0,y1,y1
 (k) ≤ Gy1,y2,y2

 (k / β) . Similarly, Gy1,y2,y2
 (k)≤ 

Gy2,y3,y3
 (k / β ) 

 

Now, again 

 

Gy2n,y2n+1,y2n+1
 (k) = GAx2n+1,Bx2n+2,Bx2n+2

 (k)  

 

       ≤ min {GSx2n+1,Sx2n+1,Ax2n+1
(k/d),GTx2n+2,Tx2n+2,Bx2n+2

(k/e),  

 

GSx2n+1,Tx2n+2,Tx2n+2
 (k /f)} 

 

 ≤ min{Gy2n+1,y2n+1,y2n
 (k /d ), Gy2n+2,y2n+2,y2n+1

 (k /e 

), Gy2n+1,y2n+2,y2n+2
 (k /f ) } 

 

 ≤ min{Gy2n,y2n+1,y2n+1
 (k / β ), Gy2n+1,y2n+2,y2n+2

(k / β ), 

Gy2n+1,y2n+2,y2n+2
 (k / β) },  

 

Where β = min{d , e, f } 

 

≤ min{Gy2n,y2n+1,y2n+1
 (k / β ), Gy2n+1,y2n+2,y2n+2

 (k / β ) }, 

 

 ≤ min{Gy2n+1,y2n+2,y2n+2
 (k / β ) } = Gy2n+1,y2n+2,y2n+2

 (k / β ) 

 

i.e. Gy2n,y2n+1,y2n+1
 (k) ≤ Gy2n+1,y2n+2,y2n+2

 (k / β) , β > 1 

 

Now again 

 

Gy2n+1,y2n+2,y2n+2
 (k) = Gy2n+2,y2n+1,y2n+1

 (k) 

 

                                = GAx2n+3,Bx2n+2,Bx2n+2
 (k)  
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   ≤ min {GSx2n+3,Sx2n+3,Ax2n+3

(k/d),GTx2n+2,Tx2n+2,Bx2n+2
(k/e),  

 

                      GSx2n+3,Tx2n+2,Tx2n+2
 (k /f )}  

 ≤ min {Gy2n+3,y2n+3,y2n+2
 (k /d ), Gy2n+2,y2n+2,y2n+1

 (k /e ), 

 

              Gy2n+3,y2n+2,y2n+2
 (k /f )} 

 

 ≤ min {Gy2n+2,y2n+3,y2n+3
 (k / β ), Gy2n+1,y2n+2,y2n+2

(k / β), 

               Gy2n+2,y2n+3,y2n+3
 (k / β) },  

  

Where β = min {d, e ,f } 

 

Hence, Gy2n+1,y2n+2,y2n+2
 (k) ≤ Gy2n+2,y2n+3,y2n+3

 (k / β) , as β >1 

 

Hence for all n, we have Gy2n,y2n+1,y2n+1
 (k) ≤ Gy2n+1,y2n+2,y2n+2

 (k / 

β) , as β >1 

 

Now, 

 

 Gy2n,y2n+1,y2n+1
 (k) ≤ Gy2n+1,y2n+2,y2n+2

 (v k) as v =1/β , β >1  

 

 Gy2n+1,y2n+2,y2n+2
 (v k) ≥ Gy2n,y2n+1,y2n+1

 (k)  

 

By lemma (3.1), we get {yn} is a PG-Cauchy sequence in X. 

Thus there exist some point z ∈ X to which {yn} converges.  

Now its subsequences 

 

{Ax2n+1}→ z, {Bx2n+2}→ z , {Sx2n+1}→ z , {Tx2n+2}→ z 

 

Case I: S is continuous. 

In this case, we have 

 

SAx2n+1 →Sz and S2 x2n+1→ Sz . 

 

The semi-compatibility of (A, S), gives SAx2n+1 → Sz . 

 

Step 1. By putting x = Sx2n+1 , y = x2n+2 in (iv), we have 

 

GASx2n+1,Bx2n+2,Bx2n+2
 (k) 

 

 ≤ min {GSSx2n+1,SSx2n+1,ASx2n+1
(k/d),GTx2n+2,Tx2n+2,Bx2n+2

(k/e),  

 

GSSx2n+1,Tx2n+2,Tx2n+2
 (k /f )}  

 

 ≤ min {GSSx2n+1,SSx2n+1,ASx2n+1
 (k / β),GTx2n+2,Tx2n+2,Bx2n+2

(k / β),  

 

GSSx2n+1,Tx2n+2,Tx2n+2
 (k /β)}, 

 

Where β = min {d, e, f} 

 

Letting n → ∞ , we have 

 

GSz,z,z (k) ≤ min {GSz,Sz,Sz (k / β),Gz,z,z(k / β), GSz,z,z (k / β) } 

 

Thus, 

 

GSz,z,z (k) ≤ min {GSz,z,z (k / β) }⇒ GSz,z,z (k) ≤ GSz,z,z (k / β)  

 

Since β >1, therefore 1/ β ∈ (0, 1). 

 

Using lemma (2.3), Sz = z. 

 

Step 2. By putting x = z, y = x2n+2 in (iv) , we have 

 

GAz,Bx2n+2,Bx2n+2
 (k) ≤ min {GSz,Sz,Az(k/d), GTx2n+2,Tx2n+2,Bx2n+2

(k/e 

), GSz,Tx2n+2,Tx2n+2
 (k /f )} 

 

 ≤ min {GSz,Sz,Az (k / β ), GTx2n+2,Tx2n+2,Bx2n+2
(k / β ),  

GSz,Tx2n+2,Tx2n+2
 (k / β) }  

 

Where β = min {d , e, f } 

 

Letting n → ∞, we have 

 

GAz,z,z (k) ≤ min {GSz,Sz,Az (k / ) , Gz,z,z(k / β ) ,GSz,z,z (k / β ) },  

 

                 ≤ min {Gz,z,Az (k / β ) , Gz,z,z(k / β ) ,Gz,z,z (k / β ) },  

 

                 ≤ Gz,z,Az (k / β ) 

 

i.e. GAz,z,z (k) ≤ GAz,z,z (k / β) , as β >1. 

 

Hence, Az = z . Thus, Sz = z = Az . 

 

As T(X) ⊆ A(X), then there exists w∈ X such that Tw = Az for 

some z ∈ X. 

 

Therefore, z = Az = Sz = Tw. 

 

Step 3. By putting x = x2n+1 , y = w in (iv), we have 

 

GAx2n+1,Bw,Bw (k) ≤ min {GSx2n+1,Sx2n+1,Ax2n+1
(k/d),GTw,Tw,Bw(k/e 

), GSx2n+1,Tw,Tw (k /f )} 

 

≤ min {GSx2n+1,Sx2n+1,Ax2n+1
 (k /β ), GTw,Tw,Bw(k /β ), 

GSx2n+1,Tw,Tw (k / β) } 

 

Letting n → ∞ , we have 

 

Gz,Bw,Bw (k) ≤ min {Gz,z,z(k/d) ,GTw,Tw,Bw(k/e ) , Gz,Tw,Tw (k /f )}  

 

                    ≤ min {Gz,z,z (k / β ) , Gz,z,Bw(k / β ) ,Gz,z,z (k / β ) }  

 

                   ≤ Gz,z,Bw (k / β) 

 

                  ≤ Gz,Bw,Bw (k / β) 

 

i.e. Gz,Bw,Bw (k) ≤ Gz,Bw,Bw (k /β ) , as β >1. 

 

As (B, T) is weak compatible, we have TBw = BTw ⇒ Bz = Tz . 

 

Step 4. By putting x = z , y = z in (iv), we have 

 

GAz,Bz,Bz (k) ≤ min {GSz,Sz,Az(k /d) ,GTz,Tz,Bz(k/e) , GSz,Tz,Tz (k /f 

)} 

 

≤ min {GSz,Sz,Az (k / β) , GTz,Tz,Bz(k / β ) , GSz,Tz,Tz (k / β) } 

 

≤ min {Gz,z,z (k / β ) , Gz,z,Bz(k / β ) , Gz,Bz,Bz (k / β ) } 

 

≤ min {Gz,z,z (k / β) , Gz,Bz,Bz(k / β ) , Gz,Bz,Bz (k / β ) }  

 

GAz,Bz,Bz (k) = Gz,Bz,Bz (k) ≤ Gz,Bz,Bz(k / β) , Thus z = Bz . 

 

Therefore z = Bz = Tz . Hence, z = Az = Sz = Bz = Tz . 

Therefore, z is a common fixed point of A, B, S and T. 

Case II. A is continuous. 

In this case, we have ASx2n+1 → Az and A2x2n+1 → Az . 

and the semi-compatibility of (A, S) gives ASx2n+1 → Sz. 

By uniqueness of limit in Menger space, we get Az = Sz . 

 

Step 5. By putting x = z, y = x2n+1 in (IV), we have 

 

GAz,Bx2n+1,Bx2n+1
 (k) ≤ min {GSz,Sz,Az(k /d), 

GTx2n+1,Tx2n+1,Bx2n+1
(k/e) , GSz,Tx2n+1,Tx2n+1

 (k /f )} 
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≤ min {GSz,Sz,Az (k / β ) , GTx2n+1,Tx2n+1,Bx2n+1

(k / β ) , 

GSz,Tx2n+1,Tx2n+1
 (k / β) }  

 

As β = min {d, e, f}.  

 

Letting n → ∞, we have 

 

GAz,z,z (k) ≤ min {GSz,Sz,Az (k / β), Gz,z,z(k / β ), GSz,z,z (k / β )}  

 

≤ min {GAz,Az,Az (k / β ) , Gz,z,z(k / β ) , GAz,z,z (k / β ) } 

  

i.e. GAz,z,z (k) ≤ GAz,z,z (k / β) , Thus, z = Az . 

 

Hence, z = Az = Sz = Bz = Tz, that is, z is a common fixed point 

of A, B, S and T. 

Now, let u be another common fixed point of A, B, S and T, then 

u = Au = Su = Bu = Tu . 

So, by putting x = u and y = z in (iv), we have 

 

GAu,Bz,Bz (k) ≤ min {GSu,Su,Au(k /d),GTz,Tz,Bz(k/e ) , GSu,Tz,Tz (k /f 

)}  

 

 ≤ min {GSu,Su,Au (k / β ) , GTz,Tz,Bz(k / β ) , GSu,Tz,Tz (k / β ) }  

 

⇒ Gu,z,z (k) ≤ min{Gu,u,u (k / β ) , Gz,z,z(k / β ) , Gu,z,z (k / β ) } ≤ 

Gu,z,z (k / β ) 

 

Hence, Gu,z,z (k) ≤ Gu,z,z (k / β) , k > 0 , β >1. ⇒ u = z. 

 

Therefore, z is the unique common fixed point of A, B, S and T. ∎ 

 

Remark 2.7: Since every metric space is a Menger space, all 

results in Menger space, with some suitable modifications, can be 

applied to metric spaces, such as theorems 3.1,and 3.2 in [26]. 
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