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Abstract 
 

In this paper the partial derivative equation strongly nonlinear of Richards which models the dynamics of water in the Un-saturated Zone 

(UZ) was linearized and solved by a new numerical method called SBA. The analytical solution has been simulated in order to be applied 

later to the following in unsaturated zone with the aquifers of Bangui and its boundaries. 
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1. Introduction 

In this paper we consider the following Richards’ equation [5], [7]: 
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Where 

:].[ 1TLK  Is the soil hydraulic conductivity at the point consid-

ered which represents the 2nd tensor order in general case, reduced 

to a scalar where the soil is isotropic ; zhLH ][  is the hy-

draulic charge at the considered point; h[L] as water pressure rela-

tively to atmospheric pressure and expressed in terms of water 

height;
 ][Lz  the side of considered point positively measured 

downwards with ground surface as reference point;
 

)(Hgrad  is 

the gradient operator ;
 

]/[ 33 mm  volumetric water content 

The diffuse form of Richards’ equation that introduces soil diffu-

sivity )(D  expressed in ][ 12 TL  and which privileges resolu-

tion in   and the capacitive form of Richards’ equation which in-

troduces the soil capillary capacity )(hC  expressed by ][ 1L  

and which privileges the resolution in h .  

For a vertical flow in space dimension 1, continuity equation in   

is known as Fokker-Planck equation: 
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And in h the equation is known under the name of Richards equa-

tion [1931]: 
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In the following, the form (3) will be used: 

We can define the Richards model to solve in dimension 1 of space 

in z: 
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Two functions inducing the nonlinearities that are hydraulic Con-

ductivity K (h) and the Capillary Capacity C (h) [2]. 

These functions depend on the variation of the water content and 

the matrix pressure h. It is a strongly nonlinear parabolic PDE 

whose existence and unicity of the solution are proven in [8, 4]. 

SBA Method [14] has been used to determine the analytical solution 

after linearization of the functions K (h) and C (h). Many digital 

method does not converge because of the strong nonlinearity if we 

want to solve the Richards equation. So it uses the SBA method to 

the advantage didn’t discredited and maintains the physical proper-

ties of the model parameters and converges despite the nonlinearity. 

2. Theoretical description of method SBA 

Method S.B.A. (SOME Blaise ABBO) allows to solve functional 

equations of type: ODE, system of ODE, PDE, system of nonlinear 

and strongly nonlinear PDE under certain conditions. It also applies 

to linear problems. This new algorithm makes it possible to obtain 

exact solutions of some ODE, system of ODE, PDE, system of non-

linear and strongly nonlinear PDE with initial conditions or initial 

conditions and in extreme cases. The new technique brings back the 

resolution of any problem of PDE (resp. ODE) nonlinear with initial 

conditions and in extreme cases to the solution of an equation of the 

http://creativecommons.org/licenses/by/3.0/
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Cauchy type. Based on a combination of the décompositionnelle 

method of Adomian an idea of the method of the successive approx-

imations and the method of Picard this algorithm is with fast con-

vergence (one or two iterations) towards the exact solution of the 

PDE (resp. ODE), system of PDE (resp. system of PDE) if they 

exist. 

The details, the convergence and the mathematical framework of 

algorithm SBA are milked in [3], 9], [11], [13]. 

2.1. Principles of the method  

On the basis of a problem ODE, system of ODE, PDE, system of 

linear and strongly nonlinear EDP, method SBA (SOME Blaise 

Abbo) consists with:  

 To approach the initial problem by the iterative diagram by 

using the idea of the method of the successive approxima-

tions and this, in suitable functional spaces. The resolution of 

the iterative diagram by the same method amounts determin-

ing with each iteration (k=1,2,3... of the approximate solu-

tions which are obtained by using the method of Picard and 

this after a judicious choice of the initial 

0U
and the solution 

of the problem is obtained by taking the limit 
 kkU

of the 

continuation  

 To reconsider the iterative diagram by using the method of 

the successive approximations either but rather décomposi-

tionnelle method of Adomian to each stage of iteration, under 

the judicious choice of 
0U .  

 To deduce the algorithm from Adomian on the basis of a ca-

nonical form of Adomian.  

 To obtain the solution with each stage then the general solu-

tion by a calculation of limit. 

2.2. Solving Richards equation by SBA 

2.2.1. Linearization functions C (h) and K (h) 

This linearization will be based on two concepts including the con-

cept of sucking and the notion of Limited Developments (L.D.) to 

order n with application to the case n = 5. The function C (h) and K 

(h) respectively represent the capillary capacity and hydraulic con-

ductivity. They are written as a function of the pressure charge 

(charge matrix) h. The used forms in our case are taken from [2]. 

They induce nonlinearities in equation (4), complicating its resolu-

tion with lot of methods. They are empirically defined [2]: 
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, if 0h  unsaturated case 

2.2.2. Sucking concept 

Generally, in unsaturated area, the pressure charge (load matrix) h 

is always negative; it is frequently replaced by the suction   de-

fined by [9]: 

 

h
                                                                                      (8)

 

 

Where  can be expressed as Pa  or bar . 

2.2.2.2. Limited development concept order n in 0 

In the situation thereafter, we will be interested only in the follow-

ing forms: 

1

0 !
)( R

i

y
yge

n

i

i
y 








 

                                                (9)

 

 

Whereby, 
1R  is the rest of the L.D.? 
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Where, 
1R  is the rest of the L.D.?  

Based on these two concepts and proceeding in (5) and (6) the fol-

lowing variables changes according to where we must then express 

functions )(hC  and )(hK  in function of the variable   then 

the variable S , we will get successively: 

In (5), expression of )( fC  :
  

We set successively 
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(5) Becomes 
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Moreover  
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As Then (13) becomes: 
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And (14) becomes 
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(15) Can be rewriten by: 
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In the following, we will proceed to the LD order 5 around 0 of (16). 

 

 LD order 5 of (16) around 0. 

 

By setting successively: 

 

)ln()1( Snr  ,
nSV  , 2

2


n
b , )1ln( VbY   

 



22 International Journal of Applied Mathematical Research 

 

432 )(
5

1
)(

4

1
)(

3

1
)(

2

1
1 nnnn SSSSq   

And )( nSbqp   we get: 
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Where 6543 ,,, RRRR  are the rest of the LD. 

According to (19), (20) becomes: 
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Where 7R  is the rest of the DL? 

 

(16) Becomes: 
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At this level, the result consists of comparing the curve of (16) with 

the curve of (23), so that (23) has been substituted from Richards 

equation. 

 In (6), expression of )( fK  

 

We set 
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(6) Becomes:
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(27) Becomes successively:
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And (29) becomes: 
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(30) Can be written: 
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Similarly, we will proceed thereafter, to LD order 5 of 

(31) Around 0. 

 

By setting successively: 
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Which upon reduction gives: 
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Which can be rewritten: 
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In the next situation, the curves of (30) and (37) have been com-

pared in order to substitute (37) in the PDE of Richards. 

2.2.2.3. Conclusion 

Through this linearization, we were able to determine appropriate 

forms of functions C (h) and K (h) that will allow us to substitute 

them from equation called Richards one to get the modified form 

that obeys utilization conditions of SBA method. 

Note: We also note that the LD order 5 used so far can be extended 

to the order n, and the result will remain the same
 

2.2.2.4. Richards’ equation amended to 1D 

Let’s consider Richards model in 1D in z expressed in terms of 

charge pressure h defined in (4): 
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To determine then the shape of the amended equation, we will use 

the linearized forms of C (h) and K (h) established in (34) and (48). 

 Let’s express the model (51) called Richards in 1D according 

to the suction h  . 

In this case (40) becomes: 
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From the foregoing, 
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Therefore the equation (53) can be rewritten as follows: 
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 Let’s express (30) and (37) as a function of   We get (30): 
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That means 
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Then the function )(SC  can be rewritten: 
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Then 
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Very important note: 

If we switch the function 
)()( pr 

by
   rp   

another less 

interesting form will be found out of 
)(SC  

that cannot take into ac-

count all parameters of the studied model. 

 Let’s express (43) according to 

 

gh
S




 

 

Therefore (43) becomes: 
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By clarifying the boundary and initials conditions, (50) system after 

reduction is equivalent to the following system: 
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Out of (49) by taking into account (51), there are obtained succes-
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 Similarly decomposing z
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resulted successively: 
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So by combining the relations (52), (54), (56) and (58), (51) be-

comes: 
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(59) Is equivalent to the following?  
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Whereby 
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Relation (60) can still be rewritten after reduction to give ultimately 

qualified model of the Richards Equation Modified in 1D in z , we 

will resolve by SBA method:
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We noticed that all scale parameters in the Hydraulic Conductivity 

 hK  
and Capillary Capacity 

 hC  
are taken into account in the 

system (61) and its parameters are : ssK ,
and 

gh  
as well as the 

shape parameters such as m and n. 

The system (61) is the new model of modified Richards, which is 

also a highly nonlinear PDEs but easily solvable with the SBA 

method with initial and limit conditions. 

The system (61) can be put in the following form, which form will 

allow us to apply the SBA algorithm if we set for example the fol-

lowing conditions: 
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Then we have been able to set Richards model as follows: 
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Whereby 
L

and 
N  

are respectively linear and nonlinear opera-

tors such as: 
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Very important Remark:  

In the Richards model used until then, it is assumed that the nonlin-

ear PDE subject to SBA algorithm is homogeneous every time we 
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can still consider the non-homogeneous case where there is pres-

ence of sources or sinks


 that is to say: 

 

 
    0 UNUL
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We will in the following resolve theoretically the model (64) by 

applying S.BA method.
 
 

2.2.3. Application of SBA method 

2.2.3.1. Theoretical application of SBA 

The considered system is (64): 
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Or 
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In the following, we ask 
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So the final problem to be solved by this algorithm is: 
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Whereby, 
  ZtSN ,

 is defined as previously. 

Problem of the transformation (67) into a Cauchy type of problem: 

1) Taking account of edge conditions: 

Consider the following equation: 
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b) Let’s consider the other operator 
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We have the following relationship: 
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By combining the equation (1) and (2) we have: 
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We obtain the following Cauchy problem type: 
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The relation (68) is called canonical form of Adomian. 

The approximate equation of the problem (68) by the new Adomian 

technique can be written: 
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Wherby 
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This canonical form obtained by the new approach Adomian allows, 

following the technique developed to resolve the problem (69). 

Indeed, the resolution of the above pattern (S.B.A.) by the method 

of successive approximations, consists then in determining for each 

iteration  ,3,2,1k  approximate solutions 

 ,,,, 21 nSSS   

But this requires firstly a choice of the initial condition 
0S . There-

after the sought solution S  to the problem (49) will be gotten by: 
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It was noted that the scheme (SBA) is a canonical form of Adomian. 

In this case, the Adomian algorithm can be written: 
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In relation (70), one can ask: 

 

   
 

    




 





b

a

b

a

k

t b

a

b

a

k

kk dVdVVtSdVdV
t

VtS
duZuSSN ,

1,1
, 1

0

1

11

                (71)

 

 

The various stages of resolution 

Step 1: Calculation 
1S  
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So the classical Adomian algorithm is written 
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In detail, the description of the algorithm is as follows: 

First step: Calculate of 

1S  
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The approximate solution of this first stage is: 
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Second Step: Calculation of 
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The approximate solution of this second stage is written: 
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K-th stage: Calculation of 
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The approximate solution of the K-th stage is: 
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The solution of the problem is obtained by: 
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Possible choice of 
0S  

Here, we show how to choose the first iteration term 
0S  the pat-

tern of successive approximations for algorithms that converge 

faster to the exact solution sought by simplifying calculations. Just 

choose 
0S  such as

0)( 0 SN
. This choice in fact, at the first 

iteration, only solves a linear problem. 

2.2.3.2. Practices application of SBA and simulation 

In this part, a model problem will be solved by our approach where 

parameters such as: 
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arbitrarily and parameters related to the model of Richards and the 

initial condition will be simulated. This will allow us to observe the 

different solutions and then compare the results to the solutions ob-

tained in the same manner by other methods. 
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At this level, the issue was clearly set initial and boundary condi-
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Gradually therefore 
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 :s  the water content in natural saturation, 

 :sK  the saturated hydraulic conductivity. 

 m and n  parameters relevant to the soil structure,

n
m

1
1  

 :gh  the inflection point of the curve retention )(fh   

 Note: 

 
Just simulate values

 ,,, m
.
 

 
It remains to compare the solutions of the problem obtained 

with this method with the solutions of the problem obtained 

by other methods. 
 

 

 
Fig. 1: T=2h. 

 

 
Fig. 2: T=3h. 
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Fig. 3:  7200,0t . 

 

 

Fig.4:  7200,0t . 

3. Interpretation 

On the curves in 2d and 3d, we see that the pressure “h” increases 

when depth “z" increases. This proves that the developed technique 

and the solution obtained by this approach reflect «reality». This 

curve is obtain for h=0, 25 and h=0, 0025 in 2D and 3D. 

4. Conclusion 

With this technic we could analytically solve Richards’ equation 

through its modified form in which all the parameters of the initial 

model are preserved and it has been possible thanks to the technic 

of penalization applied to the initial function in SBA algorithm. Our 

approach is highly reliable because, whichever numerical method 

is used the solution can easily be compared to our solution accord-

ing to the results of simulation obtained. Moreover, the constraints 

related to convergence, stability problems and that of taking into 

account of the nonlinearities were easily treated. We conclude that 

our argumentation is an innovation related to the resolution of the 

equation of Richards and is likely to be used to quantify the infil-

trated water quantity which can breach the deep tablecloth of Ban-

gui and its suburbs. 
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