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Abstract 
 

The Lunar Laser Ranging (LLR) experiment provided precise data which brought the possibility to make more stringent conclusions for 

the foundations of gravitational theories, i.e. the Equivalence Principles. Beside some effects of non - gravitational origin, the LLR data 

was fitted with the well-known gravitational effects such as the apsidal and geodetic precessions, the time delay, etc. The Nordtvedt ef-

fect in General Relativity (GR) vanishes, while the LLR experiment data of the Earth-Moon distance and the laboratory experiments with 

experimental bodies made of different chemical compositions measured a variation of distance in millimeters. According to the mathe-

matical model of gravitation in Minkowski space endowed with a nonlinear connection we obtained a result closer to the experimental 

measurements. More precisely, we obtained a difference of 0.17 mm (or 0.28 mm, depending on the value of the scaling factor) from the 

LLR measurements of the variation of the Earth-Moon distance, while the corresponding result in GR makes a difference from the LLR 

measurements of 5.7 mm. The gravitational theory with nonlinear connection in Minkowski space gives the same results for the con-

firmed GR effects, nevertheless it yields some additional variations of the distance concerning the Nordtvedt effect. 
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1. Introduction 

Advances in the understanding of the gravitation are significantly 

accomplished by the feedback between the experimental data and 

the theoretical framework. Lunar laser ranging (LLR) experiment 

is one of the most precise experiments and it measured the possi-

ble difference between the Earth's and Moon's acceleration toward 

the Sun, i.e. the Nordtvedt effect. The calculation of the Nordtvedt 

effect in the metric theories is presented in [4], [11], [12] and it is 

obtained by summation of several gravitational non-zero effects. 

The Nordtvedt effect is a measure of the Equivalence principle 

and a possible non-zero part of the Moon’s equations of motion 

relative to the Earth, considering the Sun-Earth-Moon system. It is 

defined by the fractional difference in acceleration between the 

Earth and the Moon towards the Sun, which is the quantity called 

the Eötvös ratio. The value of this quantity in the theory of GR is 

zero.  

The analytical and numerical techniques on the LLR data im-

proved the accuracy of the experimental results. Thus, the theories 

of gravitation are provided with a reliable tool for inspection with 

respect to the Nordtvedt effect. The difference between the LLR 

experimental results [13] and the GR theoretical value, including 

the laboratory experimental result [1], is 5.7 mm. 

In this paper we present a theoretical result of the Nordtvedt effect 

which gives value closer to the precise measurements, i.e. a dis-

placement which deviates from the LLR measurements no more 

than 0.28 mm (or 0.17 mm, depending on the value of the scaling 

factor). The mathematical model presented in [8] and applied in 

[9] and [10] is based on a nonlinear connection (nonlinearity of 

the covariant derivative) in the Minkowski flat space. Note that 

the metric theories use the ample Riemann differential-geometric 

apparatus for manifolds and then in the weak field reduce to dif-

ferential equations in terms of the lowest-order deviations from 

the Newton’s laws. Unlike the metric theories, this approach im-

plements coordinate transformation of a specific field tensor by 

the well-known Lorentz boost link tensor, so that a given 4-vector 

of velocity can be directly parallel-transported.  The field tensor is 

obtained from a scalar gravitational potential and the 4-vector of 

velocity related to the body which contribute to the gravitational 

field. The equations of motion follow straightforwardly and the 

calculations of the experimentally confirmed gravitational effects 

give identical results as the theory of GR in the weak field. The 

advantage of this theoretical approach is the simplicity of the 

modeling and calculation of the effects. In fact, the direct corre-

spondence with the observable physical quantities, as it is the case 

in the classical physics, makes it very convenient in practice. 

The plan of the paper is as follows. In section 2 we present a sca-

lar potential with an unknown parameter which is implemented in 

the field tensor. We form the (nonlinear) parallel transport and the 

corresponding equations of motion. The most reliable effects in 

gravitational physics are the orbital mechanical effects, such as the 

apsidal precession. Thus, using these equations of motion we de-

rive the apsidal precession of the orbits of two bodies with signifi-

cant masses, orbiting around their center of gravity. The obtained 

formula is of the form of the well-known periastron precession of 

binaries in GR. Let us note that the case of perihelion precession 

does not require parameters for the potential in this approach, but 

it gives the correct result [8] according to the experimental data 

and also agrees with the theoretical result in GR. However, in the 

case of two masses, by comparison of coefficients, we are able to 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJAMR


International Journal of Applied Mathematical Research 131 

 

 

find the unknown parameter for the potential and have definite 

expressions for the field tensor.  

In section 3 we apply the derived acceleration for the case of the 

Earth and the Moon in the fractional difference of accelerations. 

However, we do not include the apsidal motions in the sum of the 

effects contributing to the Nordtvedt effect. Namely, since the 

perigee and the perihelion precession difference relative to the Sun 

is already used in the fitting of the LLR data, i.e. it is included in 

the final estimation of the Nordtvedt effect in [14], we use that 

estimation as a reference for comparison. In the matter of apsidal 

motions and their contributions expressed in the post-Newtonian 

order of approximation in the Newton-type of equations of mo-

tion, this mathematical model is in complete agreement with the 

theory of GR, generating the corresponding expressions rather 

directly. Next, in section 3, a gravitational effect of deformation of 

the Moon’s orbit around the Earth is considered. Finally, we con-

clude that the sum of three values (along the distance vector) con-

tribute to the Nordtvedt effect: the laboratory measured effect 

which is caused by different chemical compositions of objects, the 

ratio using the accelerations obtained in the presented theoretical 

approach in section 2 and the effect of deformation of orbits for 

gravitationally bound objects. 

2. Theoretical considerations of nonlinear 

parallel transport 

Firstly, we consider two bodies with masses M and m in a binary 

gravitational system, orbiting around a common barycentre. We 

choose a coordinate system having an origin at the barycentre of 

the two bodies and let its 4-vector of velocity be  1,0,0,0)( iW . 
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correspondingly, where the corresponding 3-vectors of velocity 

are
 

 , ,x y zu u uu  and  , , ,x y zv v vv with norms u and v. Since 

the gravitational effects that we will consider take place in no 

more than two dimensions, it is sufficient to denote the coordi-

nates of the body with mass m by (x, y, 0) and the coordinates of 

the body with mass M by (x*, y*, 0). Then, the corresponding 

velocities of the bodies would be  , ,0x yu uu
 
and 

 , ,0x yv vv , and the acceleration and the angular velocity of 

the body with mass m would be  , ,0x ya aa  and   0,0, zω . 

Let the general form of the gravitational potential be  

 

,

1

1

ln1

2

22

2

Rc

Gm
Rc

GM

mM

Mc

Rc

Gmn













 
                                          (1) 

 

where R is the norm of the vector R  from the body with mass M 

to the body with mass m and n is an unknown parameter which 

can be determined by experimental measurements of the evident 

mechanical gravitational effects of post-Newtonian order like the 

apsidal motion of orbits. The aim is to derive the Earth’s and 

Moon’s acceleration towards the Sun and their fractional differ-

ence by using one potential and having in mind that the three bod-

ies form the system and not the two pairs Sun-Earth and Sun-

Moon separately. For the analysis in our Solar system it is suffi-

cient to use the following approximation of the potential (1), 
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Now, let us construct a field tensor  using the 4-vector of velocity 

(Ui) of the body with mass M and the gradient   
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 ,, . The body with mass M influences the tra-

jectory of the body with mass m and, correspondingly, the sym-

metrical case is the other way around. Thus, it is expected that the 

field tensor which will be used to derive the equations of motion 

for the body with mass m to include the velocity (Ui). Analogously 

to the Lienard-Wiechert potentials in electromagnetism, let the 

relations among the elements of the tensor   be the following: 
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assuming that the gravitational interaction from the body with 

mass M at the space-time point (x*, y*, z*, ict*) arrives to the 

space-time point (x, y, z, ict), after time t  t*. This means that t* 

is a solution of the equation .
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2/3
2

2

2

2

2/1

2

2

)(

1
11





































dt
dR

mM

m

cc

u
. Nevertheless, the 

second multiplier of this expression cannot contribute to the apsi-

dal motion and thus, for our purposes, we will not consider it. 

According to (3), i.e. (4) and the latter argument, we construct the 

elements of the tensor  as follows, 
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In order to correlate the tensor  with the physical reality, it is 

almost obvious that the fourth row (column) with the gradient of 

the potential could represent the acceleration а , while the spatial 
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part could be related to the angular velocity ω . Thus, we can 

write the physical interpretation of  as 
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where according to (5), now we have 
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We calculate these elements by approximating up to 2c  and 
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where  and  depend on the value of n in the potential (2). Now, 

yxza   0  for effects in no more than two dimensions and 
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Note that similar correlation of the field tensor with the physical 

reality is successfully implemented in the electromagnetism for 

the electromagnetic tensor where the Lienard-Wiechert potentials 

are used. However, the resemblance owes only to the tendency of 

the nature to form its laws in the Stokes’ theorem pattern of con-

servation of quantities. Still, unlike the theory of electromag-

netism, the case of the gravitational interaction is significantly 

compounded by transformation of the tensor   and the given 4-

velocity by Lorentz boost link.  

The Lorentz boost link was independently found by several au-

thors [2], [3], [7] and we present it here in the form 
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The tensor Pij is such that jjij VWP   i.e., it transforms the veloci-

ty (Wi) of the barycentre to the velocity (Vi) of the body with mass 

m. Now, the parallel transport (connection) is given by the tensor 

PPT , so the equations of motion of the body with mass m are 
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where T is the orbital period and  is the eccentricity of the con-

sidered orbit. Since the derivation of the angle   is symmetric 

with respect to the orbit of the each of the bodies with masses M 
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i.e. .5,1    So, for these values of  and  the equations of 

motion (9), for i  1 and i  2, take their definite form 
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The acceleration (7) with the values 5,1    will be used in 

the next section. It is worthwhile noting that these values corre-
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3. On the Nordtvedt effect 

The results of the Nordtvedt effect measurements are given and 

reviewed in [13], [14] and [15]. According to the LLR data [13], 
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where ea  and ma  are the magnitudes of the accelerations of the 

Earth and the Moon towards the Sun, respectively. This Eötvös 

ratio corresponds to the change of the distance Earth-Moon [13] 

(Table 2) 

 

mm][cos)1.48.2( Dr                                                         (13) 

 

using the proportionality coefficient mm,109.2 13  [6]. This 

value has been corrected for the solar radiation pressure. The val-

ue (12), i.e. (13) is measured by the LLR experiment, thus it is a 

referent value for comparison among theories.  

The effect (13) represents a sum of three effects in the presented 

approach. The first effect, which must be incorporated in the fit-

ting of the Nordtvedt effect, is caused by the different chemical 

compositions of the Earth and the Moon and it is laboratory meas-

ured. According to [1], the Eötvös ratio for this effect is 

1310)4.10.1(
2/)(






me

me

aa

aa
. 

This corresponds to the variation of distance of  

 

.mm][cos)06.49.2( Dr                                       (14) 

 

The second effect contributing to the Nordtvedt effect is the frac-

tional difference of accelerations involving the magnitude of the 

acceleration obtained in (7), where the distance from the barycen-

tre from each of the considered bodies to the Sun now can be ne-

glected. We have  








 








 


2222

)5(
1

)5(
1

Rc

GMm

R

GM

Rc

GMm

R

GM
aa me

me  

and hence,  

,10484.1
)(

5
2/)(

13
2









Rc

Gmm

aa

aa me

me

me  

where me mm , and M are the masses of the Earth, the Moon and 

the Sun respectively, and R is the distance to the Sun. This corre-

sponds to the variation of distance of  
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Now, for the third contributing effect let 1r  be the distance Earth-

Moon for 1cos D and let 2r  be the distance Earth-Moon for 

1cos D , neglecting the variation of distance by given by the 

previous contributions (13) and (14) to the effect, and neglecting 

also the large discrepancy caused by the tidal accelerations [11]. 

Let us denote by x, y, z, t the coordinates associated to the Earth 

and let X, Y, Z, T be the coordinates near the Moon, observed from 

the Earth. We assume that the unperturbed trajectory of the Earth 

around the Sun is circular and then, without loss of generality, x, y, 

z and t can be the coordinates associated to an observer far from 

massive objects. Since the distances are correlated to the mass 

generating the field, it is sufficient to use the coordinate change 
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Now, let us replace ),1( kyC  where 
22
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k   and 

2
0

1
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C  . Let the Moon be between the Sun and the Earth at 

0tt  , i.e. 1cos D , also let 0cos D  at 1tt  , and let the 

Earth be between the Sun and the Moon at 2tt  , i.e. 1cos D . 

Then the required distances observed geometrically, up to 2c , are 

given by 
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where we assumed that, apart from the tidal acceleration in or-

thonormal coordinates, the Moon's trajectory around the Earth is a 

circle with radius r, i.e. ,cos tx  .sin ty   Hence, 
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and it corresponds to the variation of the distance  

 

mm].[cos83.9 Dr                                                                  (16) 

 

The variation of the distance (16) is a consequence of the Sun's 

gravitational potential. The Sun's gravitational potential induces 

also a much larger tidal perturbation caused by the acceleration 

from the Sun, but it is well known and the value (13) is free of that 

tidal effect. The sum of variations of distance (14), (15), and (16) 

gives  

 
mm][cos)1.463.2( Dr                                                        (17) 

 

which is very close to the observed value (13). Notice that if the 

proportionality coefficient is mm10943.2 13 [5], then (17) 

should be replaced by  

 

mm][cos)1.452.2( Dr                                                        (18) 

 

It differs from the value (13) about 0.28 mm, and it is 20 times 

smaller than the deviation of the General Relativity theoretical 

prediction from the observed value. 

4. Conclusion  

We can resume that the measured value (13) is a result of three 

effects given by (14), (15) and (16). The effect given by (14) is 

measured in laboratory and so, it must be included in every theory 

of gravitation. The gravitational effect given by (15) is deduced 

considering the method shortly presented in section 2 and based 

on [8]. The effect given by (16) is a specific gravitational effect 

for gravitationally bound systems, which should be included in 

any gravitational theory. It is different from the Shapiro time delay, 

which is already taken into account within (13). In fact, (16) is an 
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effect of deformation of the observed Moon's trajectory caused by 

the Sun's gravitational potential, while the Shapiro time delay of 

signals does not consider deformation of trajectories, but the delay 

of signals in different gravitational potentials. Moreover, the effect 

of Shapiro time delay is usually considered when the two objects 

(the emitter and the receiver) near a source of gravitation have 

independent trajectories of one another and have no mutual gravi-

tational interaction. The Earth and the Moon are gravitationally 

bound, so beside the Shapiro time delay, the effect (16) should 

also be considered in the theory. 

According to this research, the deviation from the observed LLR 

value (13) is 0.17 mm (assuming that the proportionality coeffi-

cient is mm109.2 13 ) or 0.28 mm (assuming that the propor-

tionality coefficient is mm).10943.2 13 On the other hand ac-

cording to the GR which includes only (14), the deviation from 

(13) is 5.7 mm. This discrepancy is explained in GR as a possible 

violation of Gravitational WEP as a part of the Strong EP [11], 

such that the PPN coefficient  appears to be non-zero. 
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