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Abstract 
 

This paper considers the estimation methods for dynamic panel data (DPD) models with fixed effects, which suggested in econometric 

literature, such as least squares (LS) and generalized method of moments (GMM). These methods obtain biased estimators for DPD 

models. The LS estimator is inconsistent when the time dimension (T) is short regardless of the cross-sectional dimension (N). Although 

consistent estimates can be obtained by GMM procedures, the inconsistent LS estimator has a relatively low variance and hence can lead 

to an estimator with lower root mean square error after the bias is removed. Therefore, we discuss in this paper the different methods to 

correct the bias of LS and GMM estimations. The analytical expressions for the asymptotic biases of the LS and GMM estimators have 

been presented for large N and finite T. Finally; we display new estimators that presented by Youssef and Abonazel [40] as more effi-

cient estimators than the conventional estimators. 
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1. Introduction 

In econometrics literature, the panel data refers to the pooling of 

observations on a cross-section of households, countries, firms, etc. 

over several time periods. Panel data is now widely used to esti-

mate dynamic econometric models. 1 Its advantage over cross-

section data in this context is obvious: we cannot estimate dynam-

ic models from observations at a single point in time, and it is rare 

for single cross section surveys to provide sufficient information 

about earlier time periods for dynamic relationships to be investi-

gated. Its advantages over aggregate time-series data include the 

possibility that underlying microeconomic dynamics may be ob-

scured by aggregation biases, and the scope that panel data offers 

to investigate heterogeneity in adjustment dynamics between dif-

ferent types of individuals, household, or firms. 

In time series regression models it is common practice to deal with 

these by including in the specification lagged values of the covari-

ate, the dependent variable, or both. The inclusion of lags of the 

dependent variable seems to provide an adequate characterization 

of many economic dynamic adjustment processes. However, in 

panel data analysis with a small number of time periods, there 

often appear to be inference problems, such as small sample bias 

in coefficient estimation and hypothesis testing. Therefore, there 

were many estimation methods for DPD models.  

In DPD models, the least squares methods lead to inconsistent 

estimates for the parameters when T is short regardless of N. This 

inconsistency stems from the fact that the disturbance terms are 

correlated with the lagged endogenous variable. Moreover, under 

large N fixed T Asymptotic, Nickell [36] showed that the standard 

maximum likelihood (ML) estimator suffers from an incidental 

                                                 
1 See, e.g., Bond [16], Baltagi [10], and Hsiao [26]. 

parameter problem leading to inconsistency. In order to avoid this 

problem, the literature has focused on GMM estimation applied to 

first differences, such as Anderson and Hsiao [7] and Arellano and 

Bond [8]. However, the standard GMM estimator obtained after 

first differencing has been found to suffer from substantial finite 

sample bias, especially when the instruments are weak and the 

number of moments is large relative to the cross section sample 

size. See Alonso-Borrego and Arellano [4]. 

This low precision of GMM is also evident in more general con-

texts. To improve the finite sample properties of GMM estimators, 

a number of alternative estimators have been suggested, such as 

level and system GMM estimators, which presented by Arellano 

and Bover [9]. These estimators based on use many instruments 

variables to improve the efficiency of GMM estimator. However, 

these estimators still biased and need for further improvement. 

Recently, Youssef and Abonazel [40] proposed a new approach to 

improve the efficiency of GMM estimators. Furthermore, they 

presented new GMM estimators. These estimators are more effi-

cient than the conventional GMM estimators. 

From above review, we can conclude that all the estimators for 

DPD models are biased and need to improvement. Therefore, the 

main objective of this paper is discussing the different methods to 

correct the bias, and also displaying other methods that improve 

the efficiency of the estimation in DPD models.  

This paper is organized as follows. Section 2 provides the model 

and reviews the LS estimators. Section 3 presents the asymptotic 

bias of the LS estimator which has been examined by Nickell [36]. 

In Section 4, we will review the papers proposing the bias-

corrected LS estimators, such as Kiviet [27], Hansen [24], and 

Bun and Carree [19]. While in Section 5, we will display the bias 

of GMM estimators which has been examined by Hayakawa [25]. 

Section 6 provides bias-corrected GMM estimators. In Section 7, 

we will present the new efficient GMM estimators which have 
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introduced by Youssef and Abonazel [40]. Finally, Section 8 of-

fers the concluding remarks. 

2. The model and the least squares estimation 

Anderson and Hsiao [6] presented the first contribution to estimate 

the DPD models. They used LS method as an initial estimation for 

these models. They considered the first-order autoregressive, AR 

(1), panel data model with P additional time-varying regressors: 

 

yit = ϕyi,t−1 + xitβ + uit, i = 1, … , N;  t = 1,… , T,                     (1) 

 

where yit and xit denote the (scalar) dependent variable and the 1 

× P vector of exogenous variables corresponding to cross sectional 

unit i in period t, ϕ is scalar, where |ϕ| < 1, and β represent cor-

responding P × 1 parameters, and uit denotes the overall disturb-

ance term consisting of individual effects μi and an innovation εit, 

i.e. uit = μi + εit. Stacking the observations over time, we get 

 

yi = ϕyi,−1 + Xiβ + eTμi + εi, 

 

Where 

 

yi = (yi1, … , yiT)′, yi,−1 = (yi0, … , yi,T−1)
′
, Xi =

(xi1, … , xiT)′, eT = (1,… , 1)′, εi = (εi1, … , εiT)′.                       (2) 

 

Under the following assumptions:  

A1: The error terms are distributed as εit~ iid (0, σε
2). 

A2: The error terms are orthogonal to the exogenous variables, 

i.e.E (xit
′ εit) = 0. 

A3: The exogenous variables might be correlated with the indi-

vidual effect, i.e. E (xit
′ μi) ≠ 0. 

A4: The error terms are uncorrelated with the lagged endogenous 

variable, i.e. E (yi,t−1εit) = 0. 

Stacking the observations once again across individuals, we get 

 

y
NT×1

= Z
NT×(P+1)

δ
(P+1)×1

+ (IN ⊗ eT)
NT×N

μ
N×1

 + ε,
NT×1

 

 

Where y = (y1, … , yN)′ ,  μ = (μ1, … , μN)′ , ε = (ε1, … , εN)′ , and 

IN is identity matrix with dimension N. While 

 

δ = (ϕ, β′)′;  Z = (y−1, X); y−1 = (y1,−1, … , yN,−1)
′
;   

X = (X1, … , XN)′.                                                                           (3) 

 

The within group estimator of δ, which is called the covariance 

estimator by Anderson and Hsiao [6], can simply be expressed as 

 

δ̂lsdv = (
ϕ̂lsdv

β̂lsdv

) = (Z′ A Z)−1Z′ A y,                                            (4) 

 

Where the NT×NT within group transformation matrix A  is de-

fined as 

 

A = IN ⊗ (IT −
eTeT

′

T
).                                                                   (5) 

 

Anderson and Hsiao [6] showed that this estimator is inconsistent 

for fixed T due to presence of individual effects in both the dis-

turbances ε and the regressors y−1.  

3. The asymptotic bias for LSDV estimator 

Nickell [36] derived the asymptotic bias of least squares dummy 

variable (LSDV) estimator of this model in (1) under the assump-

tions A1: A4. He focused on the case of random start-up (no con-

ditioning on yi0). For the DPD model with no exogenous regressor 

variables he obtained: 

 

Plim
N→∞

(ϕ̂lsdv − ϕ) = −
1+ϕ

T−1
(1 −

(1−ϕT)

T(1−ϕ)
)× [1 −

2ϕ

(1−ϕ)(T−1)
(1 −

(1−ϕT)

T(1−ϕ)
)]

−1

                                                                                     (6) 

 

Where ϕ̂lsdv is the LSDV estimator as given in (4), this formula 

clearly showed that the inconsistency isO(T−1)and negative for 

positive y (if T > 1); Moreover, it does not depend onσε
2. Even for 

small N it has been found to approximate the true bias, as assessed 

from Monte Carlo studies, pretty close, except for large values of 

ϕ. Similar results have been found by Sevestre and Trognon [37]. 

They considered the situation where the individual effects were 

random and examined the consequences of various assumptions 

regarding the initial observations. They did not consider just the 

LSDV estimator, but the class of λ-type estimators, see Maddala 

[32], which included LSDV and OLS as special cases.  

 

For the DPD model with exogenous regressor variables, Nickell 

[36] used partitioned regression techniques to express the LSDV 

estimation errors of ϕand β in (1) and he obtained: 

 

ϕ̂lsdv − ϕ = (ỹ−1
′  M ỹ−1)

−1ỹ−1
′ M ε̃, 

 

β̂lsdv − β = −(X̃′X̃)
−1

X̃′ỹ−1(ϕ̂lsdv − ϕ) + (X̃′X̃)
−1

X̃′ε̃  

 

Where ϕ̂lsdv  and β̂lsdv  are the LSDV estimators as given in (4) 

while  ỹ = Ay , ỹ−1 = Ay−1 , X̃ = AX , ε̃  = Aε , and M = INT −

X̃(X̃′X̃)
−1

X̃′ , where A is defined in (5),Hence, the inconsistency 

reads 

 

Plim
N→∞

(ϕ̂lsdv − ϕ) = (Plim 
N→∞

1

NT
ỹ−1

′  M ỹ−1)
−1

Plim 
N→∞

1

NT
ỹ−1

′  M ε̃,   (7) 

 

Plim
N→∞

(β̂lsdv − β) = −Plim 
N→∞

(X̃′X̃)
−1

X̃′ỹ−1 Plim
N→∞

(ϕ̂lsdv − ϕ),      (8) 

 

From which it is seen that the inconsistency critically depends on 

Plim 
N→∞

1

NT
ỹ−1

′  M ε̃. Because of the assumed strict exogeneity of X 

this term can be written as Plim 
N→∞

1

NT
ỹ−1

′  M ε̃ = Plim 
N→∞

1

NT
ỹ−1

′  ε̃ . 

Nickell [36] calculated this term as 

 

Plim
N→∞

1

NT
ỹ−1

′  ε̃ =
−σε

2

T(1−ϕ)
(1 −

(1−ϕT)

T(1−ϕ)
).                                    (9) 

 

Substituting (9) into (7), we have 

 

Plim
N→∞

(ϕ̂lsdv − ϕ) = (Plim 
N→∞

1

NT
ỹ−1

′  M ỹ−1)
−1 −σε

2

T(1−ϕ)
×(1 −

(1−ϕT)

T(1−ϕ)
).                                                                                        (10) 

 

Formulas (8) and (10) are not very helpful in providing a clearcut 

insight into the asymptotic bias, and may even be very inaccurate 

as far as the actual magnitude of the bias of the LSDV estimator in 

small samples is concerned. He gives an   indication on how a 

more accurate approximation might be obtained. A comparable 

suggestion to approximate the bias to O(N−1T−1) is put forward 

by Beggs and Nerlove [11], but they did not pursue this line of 

approach. Moreover, their suggestion seems only applicable for 

the approximation of the bias in ϕ̂lsdv, and not for the complete 

coefficient vector δ̂lsdv.  

4. Bias-corrected LSDV estimators 

Although consistent estimates can be obtained by IV or GMM 

procedures, the inconsistent LSDV estimator has a relatively low 

variance and hence can lead to an estimator with lower root mean 

square error after the bias is removed. So, we interested in correct-

ing the bias for LSDV estimator to take advantage of this low 



60 International Journal of Applied Mathematical Research 

 
variance. In this section, the articles which proposed the bias-

corrected estimators of LSDV will be reviewed, such as Kiviet 

[27], Hansen [24], and Bun and Carree [19]. 

4.1. Kiviet estimator 

Kiviet [27] proposed a direct bias correction method, by deriving 

an approximating formula for the bias of the full vector of LSDV 

coefficient estimates in the DPD model in (1) with exogenous 

regressors. As he showed its magnitude can be evaluated and ex-

ploited easily.  

The basic idea, of Kiviet’s procedure to correction the bias, is the 

approximation of the unknown bias by a two-step procedure. In 

the first step empirical estimates are derived, while in the second 

step the bias is derived which leads to a correction of the biased 

estimator. The motivation for the direct correction lies in the well-

known fact, that the LSDV estimator is biased but has a variance 

much smaller compared to IV estimators, like the Anderson-Hsiao 

[7] estimator.2  Kiviet [27] derived the expected bias approxima-

tion for the LSDV estimator δ̂lsdv of (4): 

 

E(δ̂lsdv − δ) = −σε
2(D̅)−1 (

N

T
(eT

′ CeT)[2q − Z̅′AZ̅(D̅)−1q] +

tr{Z̅′(IN ⊗ ATCAT)Z̅(D̅)−1}q + Z̅′(IN ⊗ ATCAT)Z̅(D̅)−1q +

σε
2Nq′(D̅)−1q× [−

N

T
] (eT

′ CeT)tr{C′ATC} + 2tr{C′ATCATC}q) +

O(N−1T−
3

2),  

 

Where D̅ = Z̅′AZ̅ + σε
2Ntr{C′ATC}qq′, and AZ̅ = E(AZ), where Z, 

A , and eT  are given in (3), (5), and (2)respectively, and AT =
[IT − (eTeT

′ T⁄ )] , and q  isthe (P + 1)×1  unitvector: q =
(1,0,… , 0)′ , and C is T×T matrix: 

 

C =

(

 
 
 
 

0 0 . . . 0 0
1 0     0
λ 1 0    .
λ2 λ 1 .   .
. . . . .  .
.   . . . 0

λT−2 . . . λ 1 0)

 
 
 
 

,  

 

Where λ is the estimate of ϕ which obtained from the first step of 

Kiviet’s procedure. Kiviet suggested use of Anderson-Hsiao esti-

mator as a consistent first step estimator. 

4.2. Hansen estimator 

Hansen [24] suggested an alternative bias correction method, for 

the model in (1), based on the estimator which proposed by Kiviet 

[27].The basic idea is to approximate the unknown bias by making 

use of the first step biased estimator. As the starting point the bi-

ased estimators ϕ̂lsdv and β̂lsdv are obtained. The asymptotic bias 

expression is then approximated by making use of first round re-

gression results. 

He simplified the asymptotic bias formulas of ϕ̂lsdv  and β̂lsdv 

which are given in (10) and (8) respectively. By inserting M =

INT − X̃(X̃′X̃)
−1

X̃′  into (10), and by using ε̃−1 = ỹ−1 − X̃β̂lsdv , 

andβ̂lsdv = (X̃′X̃)
−1

X̃′ỹ−1, he obtained: 

 

Plim
N→∞

(ϕ̂lsdv − ϕ) = (Plim
N→∞

1

NT
ỹ−1

′ (INT − X̃(X̃′X̃)
−1

X̃′) ỹ−1)
−1

×

−σε
2

T(1−ϕ)
(1 −

(1−ϕT)

T(1−ϕ)
) = (Plim

N→∞

1

NT
ỹ−1

′ (ỹ−1 −

                                                 
2 Anderson and Hsiao [7] suggested two IV estimators, first esti-

mator based on lagged levels as instruments. While the second 

estimator uses the lagged differences as instruments.  

X̃β̂lsdv))
−1 −σε

2

T(1−ϕ)
(1 −

(1−ϕT)

T(1−ϕ)
) =

 (Plim
N→∞

1

NT
ỹ−1

′ ε̃−1)
−1 −σε

2

T(1−ϕ)
(1 −

(1−ϕT)

T(1−ϕ)
)               (11) 

 

Also, he proved that the term 

 

(𝑃𝑙𝑖𝑚
𝑁→∞

1

𝑁.𝑇
�̃�−1

′ 𝜀−̃1)
−1

,  

 

Is approximated by 

 
𝑁𝑇

�̃�−1
′ �̃�−1

,                                                                                           (12) 

 

And 

 
−𝜎𝜀

2

𝑇(1−𝜙)
(1 −

(1−𝜙𝑇)

𝑇(1−𝜙)
),  

 

Is approximated by 

 
−�̂�𝜀

2

𝑇(1−�̂�𝑙𝑠𝑑𝑣)
(1 −

(1−�̂�𝑙𝑠𝑑𝑣
𝑇 )

𝑇(1−�̂�𝑙𝑠𝑑𝑣)
).                                                          (13) 

 

By using (12) and (13) in (11), he gets on the approximated bias 

on the basis: 

 

�̂� =
𝑁𝑇

�̃�−1
′ �̃�−1

× 
−�̂�𝜀

2

𝑇(1−�̂�𝑙𝑠𝑑𝑣)
(1 −

(1−�̂�𝑙𝑠𝑑𝑣
𝑇 )

𝑇(1−�̂�𝑙𝑠𝑑𝑣)
).  

 

Hansen [24] suggested a bias-corrected estimator, �̂�𝑏𝑐,𝐻  (where 

the subscript 𝑏𝑐 means “bias-corrected” and subscript 𝐻 refers to 

Hansen), by minimizing the quadratic difference between the un-

known bias (�̂�𝑙𝑠𝑑𝑣 − 𝜙) and the approximated bias on the basis of 

the first step estimation (�̂�): 

 

�̂�𝑏𝑐,𝐻 : 𝑀𝑖𝑛
𝜙

(𝐵 − �̂�)
2

= 𝑀𝑖𝑛
𝜙

[(�̂�𝑙𝑠𝑑𝑣 − 𝜙) −
𝑁𝑇

�̃�−1
′ �̃�−1

×

 
−�̂�𝜀

2

𝑇(1−�̂�𝑙𝑠𝑑𝑣)
(1 −

(1−�̂�𝑙𝑠𝑑𝑣
𝑇 )

𝑇(1−�̂�𝑙𝑠𝑑𝑣)
)]

2

  

 

The problem has to be solved iteratively. Because the unknown 

parameter 𝜙 is expected to be in a rather narrow interval,−1 ≤
𝜙 ≤ 1, a grid-search is applied.  

While the asymptotic bias of the vector �̂�𝑙𝑠𝑑𝑣  of the remaining 

explanatory variables is given by: 

 

𝑃𝑙𝑖𝑚
𝑁→∞

(�̂�𝑙𝑠𝑑𝑣 − 𝛽) = −𝑃𝑙𝑖𝑚
𝑁→∞

(�̃�′�̃�)
−1

�̃�′�̃�−1 𝑃𝑙𝑖𝑚
𝑁→∞

(�̂�𝑙𝑠𝑑𝑣 − 𝜙) =

− 𝑃𝑙𝑖𝑚
𝑁→∞

�̂�𝑙𝑠𝑑𝑣 𝑃𝑙𝑖𝑚
𝑁→∞

(�̂�𝑙𝑠𝑑𝑣 − 𝜙)  

 

By making use of the bias-corrected parameter of the lagged en-

dogenous variable �̂�𝑏𝑐,𝐻 the bias-corrected estimator for the exog-

enous variables �̂�𝑏𝑐,𝐻  is estimated making again use of the first 

step regression results: 

 

�̂�𝑏𝑐,𝐻 = �̂�𝑙𝑠𝑑𝑣 + �̂�𝑙𝑠𝑑𝑣(�̂�𝑙𝑠𝑑𝑣 − �̂�𝑏𝑐,𝐻)  

 

Behr [12] studied the behavior of several DPD estimators (LSDV, 

GMM) and compared between Kiviet and Hansen bias-corrected 

estimators by using Monte Carlo simulation. He showed that the 

bias of bias-corrected estimator which proposed by Hansen [24] 

less than bias-corrected estimator which proposed by Kiviet [27]. 

But the superiority of Hansen estimator decreases with growing 

numbers of individuals. 

4.3. Bun-carree estimator 

As is well-known, the LSDV estimator is not consistent for large 

N and finite T in DPD models. Bun and Kiviet [21] and Bruno [18] 
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derived the infeasible bias approximations of this estimator. The 

bias approximations can be estimated using an initial consistent 

estimator such as Anderson-Hsiao or GMM estimator. All their 

bias correction methods depend on initial consistent estimates. 

While Bun and Carree [19] proposed an alternative bias correction 

method to the bias that directly uses LSDV estimator, obviating 

the need to resort to initial consistent estimates. 

Bun and Carree [19] considered the model in (1), and they formu-

lated the expressions for the case of a balanced panel to correct the 

bias of the inconsistent LSDV estimator. They reintroduced the 

LSDV estimator in (4) as follows: 

 

�̂�𝑙𝑠𝑑𝑣 = (
�̂�𝑙𝑠𝑑𝑣

�̂�𝑙𝑠𝑑𝑣

) = (𝑍′𝐴𝑍)−1𝑍′𝐴𝑦  

 

= (
�̂�𝑦−1

2 �̂�𝑥𝑦−1

′

�̂�𝑥𝑦−1
�̂�𝑥𝑥

)

−1

(
�̂�𝑦−1 𝑦

�̂�𝑥𝑦
)                                                   (14) 

 

Where 𝑍 and 𝐴 are defined in (3) and (5) respectively, while �̂�𝑥𝑦, 

�̂�𝑥𝑥, �̂�𝑦−1 𝑦, and �̂�𝑥𝑦−1
 are the sample analogs of: 

 

𝛴𝑥𝑦 = 𝑃𝑙𝑖𝑚
𝑁→∞

1

𝑁(𝑇−1)
𝑋′𝐴𝑦; 𝛴𝑥𝑥 = 𝑃𝑙𝑖𝑚

𝑁→∞

1

𝑁(𝑇−1)
𝑋′𝐴𝑋;  

 

�̂�𝑦−1 𝑦 = 𝑃𝑙𝑖𝑚
𝑁→∞

1

𝑁(𝑇−1)
𝑦−1

′ 𝐴𝑦; 𝛴𝑥𝑦−1
= 𝑃𝑙𝑖𝑚

𝑁→∞

1

𝑁(𝑇−1)
𝑋′𝐴𝑦−1.  

 

The inconsistency of the LSDV estimator as 

 

𝛿∗ = 𝑃𝑙𝑖𝑚
𝑁→∞

(�̂�𝑙𝑠𝑑𝑣 − 𝛿).  

 

Bun and Carree [19] introduced the (asymptotic) squared multiple 

correlation coefficient of the regression of �̃�𝑖,𝑡−1 on �̃�1𝑖𝑡 through 

�̃�𝑝𝑖𝑡 as 

 

𝜌𝑥𝑦−1

2 =
𝛴𝑥𝑦−1

′ 𝛴𝑥𝑥
−1𝛴𝑥𝑦−1

𝜎𝑦−1
2 ;  𝜉 = (𝜉1, … , 𝜉𝑃)′ = 𝛴𝑥𝑥

−1𝛴𝑥𝑦−1
,  

 

As the corresponding vector of regression coefficients. The incon-

sistency 𝛿∗ = (𝜙∗, 𝛽∗′)′is now conveniently expressed as 

 

𝜙∗ =
−𝜎𝜀

2ℎ(𝜙,𝑇)

(1−𝜌𝑥𝑦−1
2 )𝜎𝑦−1

2 , and 𝛽𝑝
∗ = −𝜉𝑝𝜙∗;  𝑝 = 1,… , 𝑃,                   (15) 

 

Where 

 

ℎ(𝜙, 𝑇) =
(𝑇−1)−𝑇𝜙+𝜙𝑇

𝑇(𝑇−1)(1−𝜙)2
.                                                               (16) 

 

Note that the denominator (1 − 𝜌𝑥𝑦−1

2 )𝜎𝑦−1

2  in the first expression 

of (15) is the conditional variance of �̃�−1 given �̃�. 

From the first expression in (15), it is clear that the LSDV estima-

tor �̂�𝑙𝑠𝑑𝑣 is downward-biased. The extent of the (asymptotic) bias 

depends on five parameters: 𝜙, 𝑇, 𝜎𝜀
2, 𝜎𝑦−1

2 , and 𝜌𝑥𝑦−1

2 . The bias of 

the LSDV estimator will be especially severe when (a) the value 

of 𝜙 is close to 1; (b) the number of time periods, T, is low; (c) the 

ratio of variances, 𝜎𝜀
2/𝜎𝑦−1

2 , is high; or (d) the lagged endogenous 

variable and the exogenous variable are highly correlated, either 

positively or negatively. The second expression in (15) shows that 

the inconsistency of �̂�𝑙𝑠𝑑𝑣 is proportional to that of �̂�𝑙𝑠𝑑𝑣. The bias 

of the LSDV estimator �̂�𝑙𝑠𝑑𝑣 can be either positive or negative, 

depending on the sign of the (asymptotic) covariances between 

�̃�−1 and �̃�. 

The principle of correction the bias can be explained straightfor-

wardly using (15). First, assume that the values for 𝜎𝜀
2,𝜌𝑥𝑦−1

2 𝜎𝑦−1

2 , 

and 𝜉  are known. Then use as a bias-corrected estimator, �̂�𝑏𝑐  

(where the subscript 𝑏𝑐 means “bias-corrected”; the fact that 𝑏𝑐 

also are the initials of the authors’ surnames), that value of 𝜙 for 

which 

�̂�𝑙𝑠𝑑𝑣 = 𝜙 −
𝜎𝜀

2ℎ(𝜙,𝑇)

(1−𝜌𝑥𝑦−1
2 )𝜎𝑦−1

2 .                                                          (17) 

 

This estimator can then be inserted into the second expression in 

(15) to find the bias-corrected estimator  

 

�̂�𝑏𝑐 = �̂�𝑙𝑠𝑑𝑣 + 𝜉(�̂�𝑙𝑠𝑑𝑣 − �̂�𝑏𝑐). 
 

The function ℎ(𝜙, 𝑇) as defined in (16) plays an important role in 

this nonlinear bias correction procedure. This function is always 

positive and monotonically increasing for 𝜙 ≥ −1, a condition 

that usually can be safely assumed to hold in applications. 

In practice, the values for 𝜎𝜀
2,𝜌𝑥y−1

2 𝜎𝑦−1

2 , and 𝜉are unknown. The 

values of the latter three variables can be estimated consistently 

using their sample analogs (14), as follows: �̂�𝑥𝑦−1

2 =

�̂�𝑥𝑦−1

′ �̂�𝑥𝑥
−1�̂�𝑥𝑦−1

�̂�𝑦−1

2⁄ , �̂�𝑦−1

2 , and 𝜉 = (𝜉1, … , 𝜉𝑃) = �̂�𝑥𝑥
−1�̂�𝑥𝑦−1

. 

However, the LSDV estimator of 𝜎𝜀
2is inconsistent, and the vari-

ance of the error term can be consistently estimated only when the 

LSDV estimators for 𝜙 and 𝛽 have been bias-corrected. Bun and 

Carree [19] proposed three solutions to this problem that lead to 

the same bias-corrected estimates and all these solutions depend 

on the iterative procedure. In this paper, we display a one of these 

solutions. This solution based on use of an iterative procedure for 

(17): substitute the LSDV estimate for 𝜎𝜀
2 in (17) to achieve one-

step estimates for 𝜙 and 𝛽. These estimates are used to compute 

the one-step estimate for 𝜎𝜀
2. This one-step estimate is again sub-

stituted in (17) to achieve two-step estimates for 𝜙 and𝛽and so on 

until convergence.  

Bun and Carree [19] used Monte Carlo simulation to compare the 

performance of their bias-corrected estimator (17) with the origi-

nal LSDV estimator (4), the bias-corrected estimator which intro-

duced by Kiviet [27], and the GMM estimator of Arellano and 

Bond [8]. Their simulation results on various designs showed that, 

based on root mean squared error criterion, their bias-corrected 

estimator performs well when 𝑇 is small and 𝑁 is large. Also they 

showed that bias-corrected LSDV estimators (Kiviet and Bun-

Carree estimators) perform well against GMM estimators. In cases 

where both T and N are small, the limiting distributions for the 

estimators may have little to say about the actual distribution (es-

pecially when 𝜙 is close to unity). However, given the strong (rel-

ative) performance of Bun-Carree estimator in the Monte Carlo 

exercises in cases where 𝑇 is as small as 2 or 3, this estimator 

appears suitable for research efforts with samples with large num-

bers of individuals/firms and a (very) small number of time peri-

ods.  

Bun and Carree [20] studied the extended case on bias-corrected 

estimator for the fixed-effects dynamic panel data model which 

has been presented by them in Bun and Carree [19]. They derived 

the inconsistency of the LSDV estimator for finite T and N large 

in case of both time-series and cross section heteroscedasticity and 

they showed how to implement it in bias correction procedures. 

Lokshin [31] compared the performance of three proposed estima-

tors for DPD models (bias-corrected LSDV which introduced by 

Bun and Carree, ML, and MD) along with GMM by using Monte 

Carlo. He showed that ML and Bun-Carree estimators have the 

smallest bias and are good alternatives for the GMM especially 

when 𝑇 is small (𝑇 ≤ 6). 

5. The bias in GMM estimators 

Since the work of Arellano and Bond [8], the GMM technique has 

been widely used in the estimation of dynamic panel data models. 

However, subsequent examinations of the finite sample perfor-

mance of the GMM estimator showed that it is substantially bi-

ased. One source of the bias, first discovered by Nelson and Startz 

[34], [35], is weak instruments. Staiger and Stock [38] showed 

that the instrumental variables estimator would be inconsistent 

under weak instrument asymptotics. We call this the “weak in-

struments problem”. The other source of bias is the relative num-

ber of instruments to sample size. Especially, in linear simultane-



62 International Journal of Applied Mathematical Research 

 
ous equation models, Kunitomo [29], Morimune [33], and Bekker 

[13] showed that the two stage least squares (2SLS) estimator is 

inconsistent as the number of the instruments tends to infinity. 

Hahn and Hausman [23] showed that the finite sample bias of 

2SLS estimator is monotonically increasing in the number of in-

struments. One important finding of the papers listed above is that 

the magnitude of the bias is proportional to the relative size of the 

number of instruments to the sample size. We label this the “many 

instruments problem”. 

These considerations are still binding in the estimation of DPD 

models. It is well known that in the first differencing models the 

bias is sizable when the parameter concerning the lagged depend-

ent variable is close to unity (Alonso-Borrego and Arellano [4]). 

Blundell and Bond [14] showed that this is due to weak instru-

ments, and to overcome the “weak instruments problem” they 

proposed the system GMM estimator. They first showed that the 

level GMM estimators by Arellano and Bover [9] are free from 

weak instruments when the parameter concerning the lagged vari-

able is close to unity and then combined the moment conditions 

which are used in the first differencing (by Arellano and Bond [8]) 

and the level GMM estimators to improve the efficiency of the 

estimator. The system GMM estimator is becoming widely used in 

empirical analyses. Empirical applications include the estimation 

of production functions (Blundell and Bond [15]) and empirical 

growth models (Bond et al. [17]), among others. 

In this section, we will display the finite sample properties of the 

GMM estimators. Specifically, we focus in our study on three 

GMM estimators that were provided by Arellano and Bond [8], 

Arellano and Bover [9], and Blundell and Bond [14]. 

5.1. The AR (1) panel model and GMM estimators  

The AR (1) panel data model without exogenous variables can be 

written as 

 

𝑦𝑖𝑡 = 𝜙𝑦𝑖,𝑡−1 + 𝜇𝑖 + 𝜀𝑖𝑡 , 𝑖 = 1, … ,𝑁; 𝑡 = 2,… , 𝑇,                     (18) 

 

Under the assumptions: 

i) 𝜀𝑖𝑡 are i.i.d across time and individuals and independent of 

𝜇𝑖 and 𝑦𝑖1 with 𝐸(𝜀𝑖𝑡) = 0, 𝑉𝑎𝑟(𝜀𝑖𝑡) = 𝜎𝜀
2. 

ii) 𝜇𝑖 are i.i.d across individuals with 𝐸(𝜇𝑖) = 0, 𝑉𝑎𝑟(𝜇𝑖) = 𝜎𝜇
2. 

iii) The initial observations satisfy 𝑦𝑖1 =
𝜇𝑖

1−𝜙
+ 𝑤𝑖1 for 𝑖 =

1,… , 𝑁, where 𝑤𝑖1 = ∑ 𝜙𝑗𝜀𝑖,1−𝑗
∞
𝑗=0  and independent of 𝜇𝑖. 

Assumptions (i) and (ii) are the same as in Blundell and Bond [14], 

while assumption (iii) has been developed by Alvarez and Arella-

no [5]. Stacking equation (18) over time, we obtain 

 

𝑦𝑖 = 𝜙𝑦𝑖,−1 + 𝑢𝑖, for 𝑖 = 1,… , 𝑁                                             (19) 

 

Where 

 

𝑦𝑖 = (

𝑦𝑖3

 ⋮

𝑦𝑖𝑇

) , 𝑦𝑖,−1 = (

𝑦𝑖2

 ⋮

𝑦𝑖,𝑇−1

) , 𝑢𝑖 = (

𝑢𝑖3

 ⋮

𝑢𝑖𝑇

) ; With 𝑢𝑖𝑡 = 𝜇𝑖 + 𝜀𝑖𝑡 . 

 

Given these assumptions, we get three types of GMM estimators. 

These include first-difference GMM (DIF) estimator, level GMM 

(LEV) estimator, and system GMM (SYS) estimator.  

5.1.1. First-difference GMM estimator 

The individual effect (𝜇𝑖) in (18) causes a severe correlation be-

tween the lagged endogenous variable (𝑦𝑖,−1) and the error term 

(𝑢𝑖). In order to eliminate the individual effect, Arellano and Bond 

[8] used the first differences of the model in (19): 

 

∆𝑦𝑖 = 𝜙∆𝑦𝑖,−1 + ∆𝑢𝑖 ,  
 

Where 

∆𝑦𝑖 = (

𝑦𝑖3 − 𝑦𝑖2

 ⋮

𝑦𝑖𝑇 − 𝑦𝑖,𝑇−1

), ∆𝑦𝑖,−1 = (

𝑦𝑖2 − 𝑦𝑖1

 ⋮

𝑦𝑖,𝑇−1 − 𝑦𝑖,𝑇−2

),∆𝑢𝑖 = (

𝑢𝑖3 − 𝑢𝑖2

 ⋮

𝑢𝑖𝑇 − 𝑢𝑖,𝑇−1

), 

 

And then they showed that 

 

𝐸(𝐻𝑖
𝐷′∆𝑢𝑖) = 0,                                                                          (20) 

 

Where 

 

𝐻𝑖
𝐷 = (

𝑦𝑖1 0 0 0 ⋯ 0 ⋯ 0
0 𝑦𝑖1 𝑦𝑖2 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮
0 0 0 0 ⋯ 𝑦𝑖1 ⋯ 𝑦𝑖,𝑇−2

).                 (21) 

 

Using (20) as the orthogonal conditions in the GMM, Arellano 

and Bond [8] constructed the one-step DIF (DIF1) estimator for 𝜙, 

which is given by: 

 

�̂�𝐷 = (∆𝑦−1
′ 𝐻𝐷𝑊𝐷𝐻𝐷′∆𝑦−1)

−1 ∆𝑦−1
′ 𝐻𝐷𝑊𝐷𝐻𝐷′∆𝑦,               (22) 

 

Where 

 

∆𝑦−1 = (

∆𝑦1,−1

 ⋮

∆𝑦𝑁,−1

), ∆𝑦 = (

∆𝑦1

 ⋮

∆𝑦𝑁

), 𝐻𝐷 = (

𝐻1
𝐷

 ⋮

𝐻𝑁
𝐷

), 

 

And they used the following matrix as an initial weighting matrix: 

 

𝑊𝐷 = (
1

𝑁
∑ 𝐻𝑖

𝐷′𝐷𝐻𝑖
𝐷𝑁

𝑖=1 )
−1

, 

 

Where 𝐷 is a (T – 2) × (T – 2) first-difference operator matrix 

 

𝐷 =

(

 
 
 
 

2 −1 0 ⋯ 0 0 0

−1 2 −1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ −1 2 −1

0 0 0 ⋯ 0 −1 2 )

 
 
 
 

  

 

To get the two-step DIF (DIF2) estimator, the moment conditions 

are weighted by  

 

𝑊(2)
𝐷 = (

1

𝑁
∑ 𝐻𝑖

𝐷′∆�̂�𝑖∆�̂�𝑖
′𝐻𝑖

𝐷𝑁
𝑖=1 )

−1
, 

 

Where ∆�̂�𝑖 are the fitted residuals from DIF1 in (22). 

Blundell and Bond [14] showed that when 𝜙  is close to unity 

and/or 𝜎𝜇
2/𝜎𝜀

2 increases the instruments matrix (21) becomes inva-

lid. This means that the DIF estimator has the weak instruments 

problem. 

5.1.2. Level GMM estimator 

Arellano and Bover [9] suggested use of the instrumental variables 

to eliminate the individual effect from the DPD model, while, as 

mentioned above, Arellano and Bond [8] used the first differences 

of the DPD model to eliminate it. Explicitly, Arellano and Bover 

[9] considered the level model of (19) and then they used the fol-

lowing matrix as instrumental variables: 

 

𝐻𝑖
𝐿 =

(

  
 

∆𝑦𝑖2 0 ⋯ 0

0 ∆𝑦𝑖3  ⋮

⋮  ⋱ 0

0 ⋯ 0 ∆𝑦𝑖,𝑇−1)
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Which not contains individual effect and satisfies the orthogonal 

conditions 

 

𝐸(𝐻𝑖
𝐿′𝑢𝑖) = 0.                                                                             (23) 

 

Using (23), Arellano and Bover’s [9] one-step LEV (LEV1) esti-

mator is calculated as follows: 

 

�̂�𝐿 = (𝑦−1
′ 𝐻𝐿𝑊𝐿𝐻𝐿′𝑦−1)

−1𝑦−1
′ 𝐻𝐿𝑊𝐿𝐻𝐿′𝑦.                             (24) 

 

Where 

 

𝑦−1 = (

𝑦1,−1

 ⋮

𝑦𝑁,−1

), 𝑦 = (

𝑦1

 ⋮

𝑦𝑁

),𝐻𝐿 = (

𝐻1
𝐿

 ⋮

𝐻𝑁
𝐿

)                                 (25) 

 

And the y used the following matrix as an initial weighting matrix: 

 

𝑊𝐿 = (
1

𝑁
∑ 𝐻𝑖

𝐿′
𝐻𝑖

𝐿𝑁
𝑖=1 )

−1
. 

 

To get the two-step LEV (LEV2) estimator, similarly as in DIF2 

estimator, the moment conditions are weighted by 

 

𝑊(2)
𝐿 = (

1

𝑁
∑ 𝐻𝑖

𝐿′�̂�𝑖�̂�𝑖
′𝐻𝑖

𝐿𝑁
𝑖=1 )

−1
, 

 

Where �̂�𝑖 are the fitted residuals from LEV1 estimator in (24). 

5.1.3. System GMM estimator 

Arellano and Bover [9] and Blundell and Bond [14] proposed a 

system GMM estimator in which the moment conditions of DIF 

and LEV are used jointly to avoid weak instruments and improve 

the efficiency of the estimator. The moment conditions used in 

constructing the system GMM estimator are given by 

 

𝐸(𝐻𝑖
𝑆′𝑢𝑖

𝑆) = 0.                                                                            (26) 

 

Where 𝑢𝑖
𝑆 = (∆𝑢𝑖

′, 𝑢𝑖
′)′  and 𝐻𝑖

𝑆  is a 2(𝑇 − 2)×(𝑇 + 1)(𝑇 − 2)/2 

block diagonal matrix given by 

 

𝐻𝑖
𝑆 = (

𝐻𝑖
𝐷 0

0 𝐻𝑖
𝐿)  

 

Using (26), the one-step SYS (SYS1) estimator is calculated as 

follows: 

 

�̂�𝑆 = (𝑦−1
𝑆′ 𝐻𝑆𝑊𝐺

𝑆𝐻𝑆′𝑦−1
𝑆 )

−1
𝑦−1

𝑆′ 𝐻𝑆𝑊𝐺
𝑆𝐻𝑆′𝑦𝑆,                   (27) 

 

Where 

 

𝑦−1
𝑆 =

(

 
 
 
 

∆𝑦1,−1

𝑦1,−1

 ⋮

∆𝑦𝑁,−1

𝑦𝑁,−1 )

 
 
 
 

, 𝑦𝑠 =

(

 
 
 
 

∆𝑦1

𝑦1

 ⋮

∆𝑦𝑁

𝑦𝑁 )

 
 
 
 

,𝐻𝑆 = (

𝐻1
𝑠

 ⋮

𝐻𝑁
𝑠

), 

 

And they used the following matrix as an initial weighting matrix: 

 

𝑊𝐺
𝑆 = (

1

𝑁
∑ 𝐻𝑖

𝑆′𝐺𝐻𝑖
𝑆𝑁

𝑖=1 )
−1

; With 𝐺 = (
𝐷 0
0 𝐼𝑇−2

).                   (28) 

To get the two-step SYS (SYS2) estimator, the moment conditions 

are weighted by: 

 

𝑊𝐺(2)
𝑆 = (

1

𝑁
∑ 𝐻𝑖

𝑆′�̂�𝑖
𝑆�̂�𝑖

𝑆′𝐻𝑖
𝑆𝑁

𝑖=1 )
−1

, 

 

Where �̂�𝑖
𝑆  are the fitted residuals from SYS1 estimator in 

(27).Also, they used the identity matrix (𝐼2𝑇−4) instead of 𝐺  in 

(28), in this case the weighting matrix is: 

 

𝑊𝐼
𝑆 = (

1

𝑁
∑ 𝐻𝑖

𝑆′𝐻𝑖
𝑆𝑁

𝑖=1 )
−1

, 

 

In their first step of two-step system GMM estimator, which yields 

the simple system GMM estimator. This is certainly not optimal 

either, but is easy and could perhaps suit well as first step in a 

two-step procedure. To get the two-step SYS estimator, the mo-

ment conditions are weighted by 

 

𝑊𝐼(2)
𝑆 = (

1

𝑁
∑ 𝐻𝑖

𝑆′�̈�𝑖
𝑆�̈�𝑖

𝑆′𝐻𝑖
𝑆𝑁

𝑖=1 )
−1

, 

 

Where �̈�𝑖
𝑆  are the fitted residuals from one-step SYS estimator 

with use 𝑊𝐼
𝑆 as the initial weighting matrix. 

Note that �̂�𝑆 in (27) can be expressed as: 

 

�̂�𝑆 = 𝛾�̂�𝐷 + (1 − 𝛾)�̂�𝐿, 

 

Where  �̂� =
∆𝑦−1

′ 𝐻𝐷(𝐻𝐷′
𝐻𝐷)

−1
𝐻𝐷′

∆𝑦−1

∆𝑦−1
′ 𝐻𝐷(𝐻𝐷′

𝐻𝐷)
−1

𝐻𝐷′
∆𝑦−1+𝑦−1

′ 𝐻𝐿(𝐻𝐿′
𝐻𝐿)

−1
𝐻𝐿′𝑦−1

. 

 

It is worth mentioning that Abonazel [2] provided R-code to cal-

culate DIF, LEV, and SYS estimates. Moreover, this code has 

been designed to enable the researcher to make a simulation study 

in DPD models, such as the simulation study in Youssef et al. 

[42].3 

5.2. Small sample bias properties of GMM estimators 

Hayakawa [25] considered the model in (18) under the assump-

tions (i) to (iii), and he derived the second order bias for DIF, LEV, 

and SYS estimators. He considered the general one-step GMM 

estimator based on the moment condition 𝐸[𝑓(𝐻𝑖 , 𝜙0)] =
𝐸[𝑓𝑖(𝜙0)] = 0. An inefficient one-step GMM estimator is defined 

as 

 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜙

[
1

𝑁
∑ 𝑓𝑖(𝜙)𝑁

𝑖=1 ]
′
𝑊𝑁 [

1

𝑁
∑ 𝑓𝑖(𝜙)𝑁

𝑖=1 ], 

 

Where 𝑊𝑁 is a positive semidefinite weighting matrix which satis-

fies 𝑝𝑙𝑖𝑚
𝑁→∞

𝑊𝑁 = 𝑊, and 𝑊𝑖 = 𝑊(𝐻𝑖) are symmetric and positive 

definite matrices which do not depend on parameter 𝜙. 

Generally, an estimator of 𝜙, �̂�, based on a sample of size 𝑁 al-

lows for an expansion of the form: 

 

√𝑁(�̂� − 𝜙) = 𝜙(1) +
1

√𝑁
𝜙(2) + 𝑂 (

1

𝑁
), 

 

Where 𝜙(1)  and 𝜙(2) are 𝑂(1). Typically, 𝜙(1)  has a zero mean 

and converges in distribution to a normal distribution. By taking 

an expectation and ignoring the 𝑂 (
1

𝑁
) term, then the approximate 

mean of √𝑁(�̂� − 𝜙)is 
1

√𝑁
𝐸(𝜙(2)). Therefore, the second order 

bias of �̂�is
1

√𝑁
𝐸(𝜙(2)). 

To display the formulas of the second order bias for DIF, LEV, 

and SYS estimators, Hayakawa [25] defined the following nota-

tions:  

 

                                                 
3  For information about a Monte Carlo simulation study, see 

Abonazel [3]. He provided the main steps (a simple guide) for 

making the Monte Carlo simulation study using R language. 

Moreover, He also provided some empirical examples in econo-

metrics. 
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𝜋𝑑 = [
−𝜎𝜀

2

(1+𝜙)(𝑅+𝐷)

𝜎𝜀
2𝑅(1−𝜙)

𝐹(1+𝜙)

−𝜎𝜀
2(1−𝜙)[𝑅+𝐷(1+𝜙)]

𝐹(1+𝜙)
]
′

=

[𝜋𝑑1 𝜋𝑑2 𝜋𝑑3]′  
 

𝜋𝑙 = [
1

2

1

2
]
′
= [𝜋𝑙1 𝜋𝑙2]′  

 

Where 

 

𝑅 =
𝜎𝜇

2

(1−𝜙)2
, 𝐷 =

𝜎𝜀
2

1−𝜙2
, 𝜎𝑦

2 = 𝑅 + 𝐷, 𝐹 = [
𝜎𝜀

2

1+𝜙
] [2𝑅 +

𝜎𝜀
2

1−𝜙
].  

 

And 

 

𝛼𝑑 = 𝜎𝑦
2(𝜋𝑑1

2 + 𝜋𝑑2
2 + 𝜋𝑑3

2 ) + 2𝜋𝑑2𝜋𝑑3(𝑅 + 𝜙𝐷), 𝛼𝑙 =
𝜎𝜀

2

1+𝜙
, 𝛾 =

 
𝛼𝑑

𝛼𝑑+𝛼𝑙
.   

 

The second order biases of �̂�𝐷, �̂�𝐿, and �̂�𝑆are given by 

 

𝑁 ⋅ 𝐵𝑖𝑎𝑠(�̂�𝐷) = 𝐵1
𝐷 + 𝐵2

𝐷 + 𝐵3
𝐷 + 𝐵4

𝐷, 

 

𝑁 ⋅  𝐵𝑖𝑎𝑠(�̂�𝐿) = 𝐵1
𝐿 + 𝐵2

𝐿 + 𝐵3
𝐿 + 𝐵4

𝐿, 

 

𝑁 ⋅ 𝐵𝑖𝑎𝑠(�̂�𝑆) = 𝛾(𝐵1
𝐷 + 𝐵2

𝐷) + (1 − 𝛾)(𝐵1
𝐿 + 𝐵2

𝐿) +

𝛾2(𝐵3
𝐷 + 𝐵4

𝐷) + (1 − 𝛾)2(𝐵3
𝐿 + 𝐵4

𝐿) −
2

(𝛼𝑑+𝛼𝑙)
2
𝜓3 +

1

(𝛼𝑑+𝛼𝑙)
2
𝜓4,  

 

Where 

 

𝐵1
𝐷 = 0, 𝐵2

𝐷 = −
𝜎𝜀

2

𝛼𝑑
[1 +

2𝜎𝑦
4

𝐹
−

2(𝑅+𝜙𝐷)2

𝐹
], 

 

𝐵3
𝐷 =

2𝜎𝜀
2

𝛼𝑑
2 [𝜎𝑦

2{𝜋𝑑1
2 + 𝜋𝑑2

2 + 𝜋𝑑3
2 + 𝜋𝑑1𝜋𝑑2(𝜙 − 2)}  −

𝜋𝑑1𝜋𝑑3{𝑅(2 − 𝜙) − 𝜙𝐷(2𝜙 − 3)} + 2𝜋𝑑2𝜋𝑑3(𝑅 + 𝜙𝐷)], 
 

𝐵4
𝐷 = −

2𝜎𝜀
2

𝛼𝑑
2 [𝜋𝑑1𝜋𝑑3

2 (𝑅 + 𝜙𝐷) + 𝜋𝑑1𝜋𝑑2𝜋𝑑3𝜎𝑦
2],  

 

𝐵1
𝐿 = 0,    𝐵2

𝐿 =
2𝜎𝜇

2

𝛼𝑙(1−𝜙)
,    𝐵3

𝐿 = −
𝜎𝜀

2

𝛼𝑙
2 [

𝜎𝜇
2

1−𝜙
+

𝜎𝜀
2(2𝜙−1)

2(1+𝜙)
],          

𝐵4
𝐿 =

𝜎𝜀
4(𝜙−1)

4𝛼𝑙
2(1+𝜙)

, 

 

𝜓3 =

𝜋𝑑
′

[
 
 
 
 
 

𝜎𝜀
2𝜎𝜇

2(1−3𝜙)

(1−𝜙)2(1+𝜙)
−

𝜎𝜀
4(2𝜙−1)

1−𝜙2

𝜎𝜀
2𝜎𝜇

2(1+3𝜙−2𝜙2)

(1−𝜙)2(1+𝜙)
−

𝜙𝜎𝜀
4(1+4𝜙−2𝜙2)

1−𝜙2

−𝜎𝜀
2𝜎𝜇

2

1+𝜙
−

𝜎𝜀
4

1+𝜙

𝜎𝜀
2𝜎𝜇

2(1−3𝜙)

(1−𝜙)2(1+𝜙)
−

𝜙𝜎𝜀
4(2𝜙−1)

1−𝜙2

−𝜎𝜀
2𝜎𝜇

2

1+𝜙
−

𝜎𝜀
4

1+𝜙

𝜎𝜀
2𝜎𝜇

2(1−3𝜙)

(1−𝜙)2(1+𝜙)
−

𝜙𝜎𝜀
4(2𝜙−1)

1−𝜙2 ]
 
 
 
 
 

𝜋𝑙
 , 

 

𝜓4 = 𝜋𝑑
′

[
 
 
 
 
 
2𝜋𝑙1

 𝜎𝜀
4

1+𝜙
−

2𝜋𝑑1
 𝜎𝜀

2𝜎𝜇
2

1−𝜙2

2𝜋𝑙2
 𝜙𝜎𝜀

4(𝜙−2)

1+𝜙
−

2𝜋𝑑1
 𝜙𝜎𝜀

2𝜎𝜇
2

1−𝜙2

−2𝜋𝑑2
 𝜎𝜀

2𝜎𝜇
2

1−𝜙2

2𝜋𝑙2
 𝜎𝜀

4

1+𝜙
−

2𝜋𝑑2
 𝜙𝜎𝜀

2𝜎𝜇
2

1−𝜙2 −
𝜋𝑑3

 𝜎𝜀
2𝜎𝜇

2

1−𝜙 

2𝜋𝑑3
 𝜙𝜎𝜀

2𝜎𝜇
2

1−𝜙2

2𝜋𝑙2
 𝜎𝜀

4

1+𝜙
−

𝜋𝑑2
 𝜙𝜎𝜀

2𝜎𝜇
2

1−𝜙 −
2𝜋𝑑3

 𝜎𝜀
2𝜎𝜇

2

1−𝜙2 ]
 
 
 
 
 

𝜋𝑙
 . 

 

He confirmed how well the second order biases explain the actual 

biases by comparing theoretical values with simulation values. 

Since the biases of all estimators are characterized by 𝑁, 𝜙 and 

𝜎𝜇
2/𝜎𝜀

2, he calculated the theoretical values of the biases for the 

cases 𝜎𝜇
2/𝜎𝜀

2 = 0.25, 1, 4 with 𝜙 = 0.1, …, 0.9 and 𝑁 = 50. He 

found that the theoretical and simulation values are close when 

𝜙 ≤ 0.5.  

Also, he found that the bias of the SYS estimator is a weighted 

sum of the biases in opposite directions of the DIF and LEV esti-

mators. In addition, he found that the role of the weight is also 

important since it adjusts the difference of the magnitudes of the 

biases. And he provided theoretical evidence why the SYS estima-

tor has smaller bias. When 𝜎𝜇
2 and 𝜎𝜀

2 are of almost the same value 

is an important reason why the system estimator has small bias. In 

the case when 𝜎𝜇
2/𝜎𝜀

2 = 4, the biases of the entire GMM estimator 

are sizable. 

6. Bias-corrected GMM estimators 

Chigira and Yamamoto [22] proposed a bias-corrected estimator 

based on reduce the bias in GMM estimator. Let 𝑇 be an even 

integer, they defined the bias-corrected estimator (�̂�𝐶𝑌
𝐵𝐶) as follows: 

 

�̂�𝐶𝑌
𝐵𝐶 = 2�̃� −

1

2
(�̃�𝐼 + �̃�𝐼𝐼),                                                          (29) 

 

Where �̃� is a GMM estimator for the whole period, while �̃�𝐼 and 

�̃�𝐼𝐼 are GMM estimators based on a sample of the first period (𝑡 =
3,… , 𝑇/2 + 1 ) and of the second period ( 𝑡 = 𝑇/2 + 2,… , 𝑇 ), 

respectively. Next, we define the asymptotic bias of �̃�,𝐴𝐵𝑖𝑎𝑠(�̃�), 

as 𝐸(�̃� − 𝜙) , ignoring the terms whose orders are lower than 

𝑂 (
1

𝑁𝑇
). 

They showed that the bias-corrected estimator in (29) has no as-

ymptotic bias, i.e. 𝐴𝐵𝑖𝑎𝑠(�̂�𝐶𝑌
𝐵𝐶) = 𝑜 (

1

𝑁𝑇
) if satisfies the following 

condition: 

 

𝐴𝐵𝑖𝑎𝑠(�̃�) =
𝑐

𝑁𝑇
+ 𝑜 (

1

𝑁𝑇
),                                                          (30) 

 

Where 𝑐 is a finite-valued constant independent of 𝑇and 𝑁. Note 

that, when 𝑇 is odd integer, say 𝑇 = 2𝑚 + 1, the bias-corrected 

estimator defined as: 

 

�̂�𝐶𝑌
𝐵𝐶 = 2�̃� −

𝑚

2𝑚+1
�̃�𝐼 −

𝑚+1

2𝑚+1
�̃�𝐼𝐼, 

 

Where �̃� is a GMM estimator for the whole period, while �̃�𝐼 and 

�̃�𝐼𝐼 are GMM estimators based on a sample of the first period (𝑡 =
3,… ,𝑚 + 1) and of the second period (𝑡 = 𝑚 + 2,… , 𝑇), respec-

tively.  

The �̂�𝐶𝑌
𝐵𝐶estimatorin (29) has no asymptotic bias as long as (30) 

holds. Unfortunately, the asymptotic biases of DIF, LEV, and SYS 

GMM estimators that were displayed in above are not given by 

(30). Explicitly, these estimators have, as shown by Bun and Ki-

viet [21], a bias of the order 1/𝑁 and do not satisfy (30). Chigira 

and Yamamoto [22] solved this problem by providing a GMM 

estimator whose bias is given by (30). 

7. Alternative GMM estimators 

In this section, we review the new GMM estimators which pre-

sented by Youssef and Abonazel [40] as alternative estimators for 

the conventional GMM estimators. They proposed a new approach 

to improve the efficiency of the conventional GMM estimators. 

Their approach (Youssef-Abonazel’s approach) is based on the 

optimal (or at least suboptimal) weighting matrix4 of GMM esti-

mation, then use of these matrices as new weighting matrices in 

GMM estimation, and then we get new GMM estimators. The new 

GMM estimators are more efficient than the conventional GMM 

estimators.  

In level GMM estimation, Youssef et al. [41] showed that 𝑊𝐿 is 

an optimal weighting matrix only in the case of 𝜎𝜇
2 = 0, i.e., no 

individual effects case, and they presented an optimal weighting 

matrix for LEV estimator, in the general case, as: 

 

𝑊𝑂𝐿 = (
1

𝑁
∑ 𝐻𝑖

𝐿′𝐽𝑇−2𝐻𝑖
𝐿𝑁

𝑖=1 )
−1

; With  𝐽𝑇−2 = 𝐼𝑇−2 + 𝜌𝑙𝑇−2𝑙𝑇−2
′ , 

                                                 
4 Youssef et al. [41] studied the conventional GMM weighting 

matrices that using in LEV and SYS GMM estimators, and also 

they proposed other more efficient weighting matrices. 
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Where 𝜌 = 𝜎𝜇

2/𝜎𝜀
2 and 𝑙𝑇−2 is a (𝑇 − 2)×1 vector of ones. 

Note that the use of the weighting matrix 𝑊𝑂𝐿 can be described as 

inducing cross-sectional heterogeneity through 𝜌, and also can be 

explained as partially adopting a procedure of generalized least 

squares to the level estimation. So, using 𝑊𝑂𝐿 , instead of 𝑊𝐿 , 

certainly improve the efficiency of LEV estimator. So, using 𝑊𝑂𝐿, 

we can obtain the optimal level GMM (OLEV) estimator: 

 

�̂�𝑂𝐿 = (𝑦−1
′ 𝐻𝐿𝑊𝑂𝐿𝐻𝐿′𝑦−1)

−1𝑦−1
′ 𝐻𝐿𝑊𝑂𝐿𝐻𝐿′𝑦. 

 

In system GMM estimation, Youssef and Abonazel [40] used 𝐽𝑇−2 

in the weighting matrix to improve the efficiency for SYS estima-

tor as follows: 

 

𝑊𝑆𝑆 = (
1

𝑁
∑ 𝐻𝑖

𝑆′
𝐺𝑗𝐻𝑖

𝑆𝑁
𝑖=1 )

−1
; With 𝐺𝑗 = (

𝐷 0
0 𝐽𝑇−2

). 

 

So, they presented the suboptimal system GMM (SSYS) estima-

tor5 depending on the suboptimal weighting matrix (𝑊𝑆𝑆): 

 

�̂�𝑆𝑆 = (𝑦−1
𝑆′ 𝐻𝑆𝑊𝑆𝑆𝐻𝑆′𝑦−1

𝑆 )−1𝑦−1
𝑆′ 𝐻𝑆𝑊𝑆𝑆𝐻𝑆′𝑦𝑆. 

 

Since an asymptotically efficient estimator can be obtained 

through the two-step procedure in the standard GMM estimation. 

In the first step, an initial positive semidefinite weighting matrix is 

used to obtain consistent estimates of the parameters. Given these, 

a weighting matrix can be constructed and used for asymptotically 

efficient two-step estimates. It is well known6 that the two-step 

estimated standard errors have a small-sample downward bias in 

dynamic panel data setting, and one-step estimates with robust 

standard errors are often preferred. Therefrom Youssef and 

Abonazel [40] suggested using the three-step procedure in GMM 

estimation; this can obtain by replacing the residuals from the two-

step estimation into new weighting matrix to achieve more effi-

ciency for all GMM estimators.7 

Note that if ρ = 0 , we get JT−2 = IT−2  then WOL = WL  and 

WSS = WG
S . Therefrom Youssef and Abonazel’s estimators 

(OLEV and SSYS) are equivalent to the conventional GMM (LEV 

and SYS) estimators.  

Youssef and Abonazel [40] used the Kantorovich inequality (KI) 8 

to study the efficiency gain for the new estimators against the 

conventional estimators. They find that the new estimators are 

more efficient than the conventional estimators. Moreover, the 

potential efficiency gain for the new estimators becomes large 

when the variance of individual effects (σμ
2) increases compared 

with the variance of the errors (σε
2). In other words, the advantages 

from OLEV and SSYS estimators are increasing when ρ is in-

creasing. Moreover, They make Mote Carlo simulation study to 

illustrate the moderate and large samples performance of LEV, 

SYS, OLEV, and SSYS estimators in different situations of 

ϕ, ρ, and T. The simulation study confirms the KI conclusion, i.e., 

the simulation study indicates that the OLEV and SSYS estimators 

are more efficient than LEV and SYS estimators, respectively. 9 

Since, the bias and RMSE of SSYS are smaller, in most situations, 

than the bias and RMSE of OLEV especially when ρ > 1. Conse-

quently, they concluded that the SSYS estimator will provide use-

ful parameter estimates for the practitioner.  

 

                                                 
5  Kiviet [28] proposed a similar estimator using an optimal 

weighting matrix based on the particular values of 𝜙, 𝜎𝜇
2, and 𝜎𝜀

2. 
6 See, e.g., Arellano and Bond [8] and Windmeijer [39]. 
7 For more details about the three-step procedure in GMM estima-

tion, See Youssef and Abonazel [40]. 
8 Youssef and Abonazel [40] calculated the IK upper bounds of 

SYS and SSYS estimators. These bounds have been derived by 

Liu and Neudecker [30]. 
9 See Tables 1 to 5 in Youssef and Abonazel [40]. 

 
Fig. 1: Bias of the conventional and new GMM estimators when Φ =.85, T 

= 8, and N = 600. 
 

 
Fig. 2: RMSE of the conventional and new GMM estimators when Φ 

=.85, T = 8, and N= 600. 
 

For further clarification, the important simulation results for 

Youssef and Abonazel [40] were summarized in this paper in two 

Figures. Fig. 1 presents the bias values of LEV, SYS, OLEV, and 

SSYS estimators when ϕ = .85, T = 8, and N = 600. While Fig. 

2 presents RMSE values of the same estimators in the same values 

of ϕ, T,and N. Figs. 1 and 2 show that Youssef-Abonazel’s ap-

proach improves the bias and RMSE of GMM estimators together, 

not only RMSE. Moreover, SSYS estimator is better than other 

GMM estimators, especially when ρ is increasing (ρ > 1) even if 

T is small and ϕ close to one. 

8. Conclusions 

In this paper, we discuss the estimation methods for DPD models 

with fixed effects which suggested in econometric literature, and 

we focus on LS and GMM methods. All these methods obtain 

biased estimators for DPD models. Therefore, we discuss the dif-

ferent methods to correct the bias of LS and GMM estimations. 

And we present the analytical expressions for the asymptotic bias-

es of the LS and GMM estimators for large N and finite T. Finally, 

we discuss the properties of Youssef and Abonazel’s [40] estima-

tors.  

From this review, we can divide all improving methods of the 

estimation in DPD models into two approaches. The first approach 

includes all the bias correction methods (all methods above except 

Youssef-Abonazel’s approach). In this approach, we improve the 

estimation by remove (or at least reduce) the bias from the esti-

mates, without any improvement in the efficiency of it. While the 

second approach includes the methods that improve the efficiency 

of the estimation, without any direct improvement in bias, as in 

Youssef-Abonazel’s approach. However, the bias of estimates 

from the second approach is also very small. Therefrom, we con-

clude that use of the second approach is more efficient than the 

first approach. 
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