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University of Oran Senia, P.O. Box 1524 Oran, Algeria

* a.bouhassoun@yahoo.fr

Abstract

This paper deals with implementation of the variational homotopy pertubation method (VHPM)
for solving the K(2,2) compacton equation. The numerical results show that the approach is easy
to implement and accurate when it is compared with the exact solution. The suggested algorithm
is quite efficient and is practically well suited for use in the nonlinear problems. The fact that the
proposed technique solves nonlinear problems without using the Adomian’s polynomials can be
considered as a clear advantage of this algorithm over the decomposition method.
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1 Introduction

Nonlinear differential equations are encountered in various fields in physics, chemistry, biology,
mathematics and engineering. For example, Burgers’ equation is used to describe various kinds of
phenomena such as turbulence and the approximation theory of flow through a shock wave traveling
in a viscous fluid [2]. Numerical methods which are commonly used such as finite difference [4],
finite element or characteristics method need large size of computational works and usually the
effect of round-off error causes loss of accuracy in the results. Most nonlinear models of real-life
problems are still very difficult to solve either numerically or theoretically.

In recent years, several methods have drawn particular attention, such as the Adomian decom-
position method [1], the variational iteration method [5], the homotopy analysis method [13], and
the homotopy perturbation method [6, 7, 8, 9].

In this paper we consider the following nonlinear dispersive K(m,n) equation:

ut + a(um)x + (un)xxx = 0 (1)

developed in [10] for describing the compacton (m > 0, 1 < n ≤ 3) which is a compact wave that
preserves its shape after the interaction with another compact wave.
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In the case m = n = 1, this equation becomes

ut + (u2)x + (u2)xxx = 0, (2)

has

u(x, t) = (4c/3) cos2((x− ct)/4) (3)

as exact solution and it is developed in [4] for describing the compacton solution. While taking
u(x, 0) = (4/3) cos2(x/4), and considering Eq. (2), it derives the initial value problem

{

ut + (2u+ 6uxx)ux + 2uuxxx = 0, t > 0
u(x, 0) = (4/3) cos2(x/4)

. (4)

In what follows, the variational iteration method is modified by introducing a transformation
such that the solution is expressed by the series approximation. Precisely, we couple the classical
variational iteration method with He’s polynomials [7, 9] and construct a new homotopy to solve
(4). Our modification proposed in Section IV extends the variational iteration method with He’s
polynomials. This modification provides an accurate approximation for the K(2, 2) equation.
This implies that our method provides a new idea of the variational iteration method with He’s
polynomials for finding an approximation of the nonlinear differential equations. Observing the
numerical results, and comparing our approximation with the exact solution, the proposed method
reveals to be very close to the exact solution. The details of the comparison results are displayed
in Table 1 and Table 2 in Section 5.

2 Variational Iteration Method

To illustrate the basic concepts of the VIM, we consider the following differential equation

L(u(x, t)) +N(u(x, t) = g(x, t) , (5)

where L is a linear operator, N is a nonlinear operator and g(x, t) is an inhomogeneous term. Then
we can construct a correction functional as follows

un+1(x, t) = un(x, t) +

t
∫

0

λ {L(u(x, τ)) +N(ũ(x, τ))− g(x, τ)}dτ (6)

where λ is a general Lagrange multiplier, which can be identified optimally via variational theory.
The second term on the right hand side is called the correction and is considered as a restricted
variation, i.e., δũn = 0. By this method, it is required first to determine the Lagrangian multiplier
λ that will be identified optimally. The successive approximations un+1(x, t), n ≥ 0 of the solution
u(x, t) will be readily obtained upon using the determined Lagrangian multiplier and any selective
function u0(x, t). Consequently, the solution is given by

u(x, t) = lim
n→∞

un(x, t). (7)
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3 Homotopy Perturbation Method

To illustrate the basic ideas of the HPM, we consider the following nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (8)

with the boundary conditions

B

(

u,
∂u

∂n

)

= 0, r ∈ Γ, (9)

where A, is a general differential operator, B is a boundary operator, f(r)is a known analytical
function and Γ is the boundary of the domain Ω.

Generally speaking, the operator A can be divided into two parts L and N where L is the linear
part, and N the nonlinear part. Therefore Eq. (8) can be rewritten as

L(u) +N(u)− f(r) = 0. (10)

By the homotopy perturbation technique, we construct a homotopy v(r, p) : Ω× [0, 1] → Rwhich
satisfies

H(v, p) = (1− p) [L(v)− L(u0)] + p [A(v)− f(r)] = 0, (11)

or

H(v, p) = L(v)− L(u0) + pL(u0) + p [N(v)− f(r)] = 0, (12)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of equation (8)
which satisfies the boundary conditions. Considering equation (12) we will have

H(v, 0) = L(v)− L(u0) = 0 (13)

and

H(v, 1) = A(v)− f(r) = 0. (14)

The changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r). In topology
this is called deformation and L(v)−L(u0) and A(v)−f(r) are called homotopy. According to the
homotopy perturbation theory, we can first use the embedding parameter p as a small parameter
and assume that the solution of equation (11) can be written as a power series in p

v = v0 + pv1 + p2v2 + . . . (15)

Setting p = 1 one have the approximation solution of equation (n8) as the following

u = lim
p→1

v = v0 + v1 + v2 + . . . (16)

The convergence of series (16) is discussed in [3].
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4 Variational Homotopy Perturbation Method

In the homotopy perturbation method [11], the basic assumption is that the solutions can be
written as a power series in p

u =
+∞
∑

i=0

piui = u0 + pu1 + p2u2 + . . . (17)

To illustrate the concept of the variational homotopy perturbation method [matinfar2] we consider
the general differential equation (5). We construct the correction functional (6) and apply the
homotopy perturbation method to obtain [12, 14].

+∞
∑

r=1

piui(x, t) = u0(x, t) + p

t
∫

0

λ

{

N(
+∞
∑

r=1

piui(x, τ))− g(x, τ)

}

dτ. (18)

As we see, the procedure is formulated by the coupling of variational iteration method and homo-
topy perturbation method. A comparison of like powers of p gives solutions of various orders.

5 Numerical Results

In this section we will examine the nonlinear dispersive equation K(2, 2) defined in Eq. (2) and
expressed in the form of the initial value problem (4). We apply the VHPM developed in Section 4,
construct the correction functional and calculate the Lagrange multipliers optimally via variational
theory.

The correction functional for (4) reads

un+1 = un +

t
∫

0

λ(τ)
{

(un)τ + ((ũn)
2)x + ((ũn)

2)xxx
}

dτ, (19)

or

un+1 = un +

t
∫

0

λ(τ)

{

∂un

∂τ
+

(

2un + 6
∂2un

∂x2

)

∂un

∂x
+ 2un

∂3un

∂x3

}

dτ (20)

and which yields the stationary conditions

{

λ
′=0

λ+ 1 = 0
. (21)

Therefore, the general Lagrange multiplier can be readily identified as λ = −1.

Substituting this value of the Lagrangian multiplier into functional (19) or its equivalent equa-
tion (20) gives the iteration formula

un+1(x, t) = un(x, t)−

t
∫

0







∂un(x,τ)
∂τ

+
(

2un(x, τ) + 6∂2un(x,τ)
∂x2

)

∂un(x,τ)
∂x

+2un(x, τ)
∂3un(x,τ)

∂x3







dτ . (22)
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Applying the variational homotopy perturbation method, one obtains

+∞
∑

i=0

piui(x, t) = u0(x, t)− p

t
∫

0











































∂
+∞
∑

i=0

piui(x,τ)

∂τ
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+∞
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i=0
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6
∂2

+∞
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i=0
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∂x2











∂
+∞
∑

i=0

piui(x,τ)

∂x
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i=0
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∂3

+∞
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i=0

piui(x,τ)

∂x3











































dτ. (23)

Comparing the coefficient of like powers of p we obtain the following set of linear partial differential
equations

u1(x, t) = −

t
∫

0

{

2u0(x, τ)
∂3u0(x, τ)

∂x3
+

(

2u0(x, τ) + 6
∂2u0(x, τ)

∂x2

)

∂u0(x, τ)

∂x

}

dτ (24)

u2(x, t) = −

t
∫

0















6∂2u0(x,τ)
∂x2

∂u1(x,τ)
∂x

+ 2∂3u0(x,τ)
∂x3 u1(x, τ)

+6∂u0(x,τ)
∂x

∂2u1(x,τ)
∂x2 + 2u0(x, τ)

∂3u1(x,τ)
∂x3

+2u0(x, τ)
∂u1(x,τ)

∂x
+ 2∂u0(x,τ)

∂x
u1(x, τ)















dτ (25)

u3(x, t) = −

t
∫

0



































6∂2u0(x,τ)
∂x2

∂u2(x,τ)
∂x

+ 2u1(x, τ)
∂3u1(x,τ)

∂x3

+2u0(x, τ)
∂u2(x,τ)

∂x
+ 2u1(x, τ)

∂u1(x,τ)
∂x

+2u2(x, τ)
∂3u0(x,τ)

∂x3 + 2u2(x, τ)
∂u0(x,τ)

∂x

+6∂u0(x,τ)
∂x

∂2u2(x,τ)
∂x2 + 2u0(x, τ)

∂3u2(x,τ)
∂x3

+6∂u1(x,τ)
∂x

∂2u1(x,τ)
∂x2



































dτ (26)

.

.

.

and so on, in the same manner the rest of components can be obtained using the Maple package.
Consequently, while taking the initial value u(x, 0) = 4

3
cos2(x

4
), and according to Eqs. (24)-(26),

the first few components of the variational homotopy perturbation solution for Eq. (19) are derived
as follows

u0(x, t) = u(x, 0) = 4
3
cos2(x

4
)

u1(x, t) =
2
3
cos(x

4
) sin(x

4
)t

u2(x, t) =
−1
12

(

−1 + 2 cos2(x
4
)
)

t2

u3(x, t) =
−1
36

(

cos(x
4
) sin(x

4
)
)

t3

.
.
.
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The other components of the VHPM can be determined in a similar way. Finally, the approximate
solution of Eq. (19) in a series form is

u(x, t) ≃ u0(x, t) + u1(x, t) + u2(x, t) + . . . (27)

Consequently, the third-order term approximate solution for Eq. (19) is given by

u(x, t) = 4
3
cos2(x

4
) + 2

3
cos(x

4
) sin(x

4
)t

− 1
12

(

−1 + 2 cos2(x
4
)
)

t2 − 1
36

(

cos(x
4
) sin(x

4
)
)

t3
(28)

and this will, in the limit of infinitely many terms, yield the closed form solution

u(x, t) = (
4

3
) cos2(

x− t

4
). (29)

represented in figure 1.
On the other hand, a development of the exact solution (29) in Taylor series over t=0 to order 3
gives:

u(x, t) = 4
3
cos2(x

4
) + 2

3
cos(x

4
) sin(x

4
)t

− 1
12

(

−1 + 2 cos2(x
4
)
)

t2 − 1
36

(

cos(x
4
) sin(x

4
)
)

t3 +O(t4)
(30)

which confirms our result.

Figure 1: Graphic representation of the exact solution (29) of the initial value problem (4).

Figure 2: Approximate solution (27) of the Eq. (19) given by the VHPM method with third order.
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Table 1: The VHPM results for 3 iterations in comparison with the exact solution of the K(2,2) equation
with initial conditions of Eq. (4).

t/x 0.1 0.2 0.3 0.4 0.5
0.1 1.73466*10−7 1.72903*10−7 1.71907*10−7 1.70481*10−7 1.68629 ∗ 10−7

0.2 2.77616 ∗ 10−6 2.76852 ∗ 10−6 2.75397 ∗ 10−6 2.73253 ∗ 10−6 2.70427 ∗ 10−6

0.3 0.0000140555 0.0000140239 0.0000139572 0.0000138556 0.0000137194
0.4 0.0000444185 0.0000443408 0.0000441522 0.0000438533 0.0000434448
0.5 0.000108417 0.000108281 0.000107875 0.000107199 0.000106255

Table 2: The VHPM results for 6 iterations in comparison with the exact solution of the K(2,2) equation
with initial conditions of Eq. 4.

t/x 0.1 0.2 0.3 0.4 0.5
0.1 1.44542 ∗ 10−11 1.44051 ∗ 10−11 1.43199 ∗ 10−11 1.41993 ∗ 10−11 1.40423 ∗ 10−11

0.2 9.25265 ∗ 10−10 9.22456 ∗ 10−10 9.17342 ∗ 10−10 9.09935 ∗ 10−10 9.00253 ∗ 10−10

0.3 1.05408 ∗ 10−8 1.05125 ∗ 10−8 1.0458 ∗ 10−8 1.03774 ∗ 10−8 1.02708 ∗ 10−8

0.4 5.92275 ∗ 10−8 5.909 ∗ 10−8 5.88049 ∗ 10−8 5.83727 ∗ 10−8 5.77947 ∗ 10−8

0.5 2.25925 ∗ 10−7 2.25481 ∗ 10−7 2.24474 ∗ 10−7 2.22906 ∗ 10−7 2.2078 ∗ 10−7

In figure 1, we have represented the graph of the exact solution of Eq. (20). As we see, there
is practically no difference between the graph of the approximate series solution in Fig. 2 and the
exact solution in Fig. 1. Additionally, we see in table 1, that the calculation of error between
the exact solution and that obtained by the VHPM method shows that the resulting value is very
close to the exact solution.

6 Conclusion

In this paper, we have studied the one-dimensional K(2,2) equation by using the variational ho-
motopy perturbation method. The results show that the proposed method is powerful for finding
the numerical solutions and can be used to obtain the series solution for the general case K(m,n)
equations, where m and n can be different from 2. We have seen that the VHPM method requires
the evaluation of the Lagrangian multiplier λ, while the ADM method requires the evaluation
of the Adomian polynomials. As the evaluation of the Adomian polynomials for every nonlin-
ear terms requires more and more algebraic calculations, it should be better to used the VHPM
method to overcome this difficulty. We can integrate the equation directly without use calculation
of Adomian polynomials. Moreover, an observation of the error analysis in Table 1 and 2 shows
that more accuracy can be obtained by adding terms in the series.
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