

International Journal of Applied Mathematical Research, 2 (3) (2013) 352-355 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR

Common fixed point results in cone metric spaces

S. K. Tiwari¹, R. P. Dubey², A. K. Dubey³

^{1, 2} Department of Mathematics, Dr. C. V. Raman University Bilaspur, Chhattisgarh - 495113 India
 ³Department of Mathematics, Bhilai Institute of Technology, Bhilai House, Durg 491001, India
 *Corresponding author E-mail : sk10tiwari@gmail.com

Abstract

In this paper, we generalize and prove common fixed point theorems of generalized contractive maps in complete cone metric spaces. Our theorems improve and generalize of the results [7].

Keywords: Complete cone metric space, common fixed point, Generalized contractive Mapping, Non-normal cone.

1 Introduction

Recently, Huang and Zhang [1], replaced the real numbers by an ordering Banach space, and defined a cone metric spaces(X, d) of contractive mappings and also discussed some properties of convergence of sequences; many authors have established and extend different types of contractive mappings in cone metric spaces see for instance [3-10]., and also generalized the results [1] by [2]. The author [7] proved fixed point results in cone metric spaces.

The purpose of this paper is to obtain the generalization of results in [1] and 2.1, 2.2 of [7], by using non-normality of cone.

2 **Preliminary notes**

First, we recall some standard notations and definitions in cone metric spaces with some of their properties [1].

Definition 2.1 [1]: Let *E* be a real Banach space and *P* be a subset of *E*. *P* is called a cone if and only if:

- (i) *P* is closed, non empty and $P \neq \{0\}$,
- (ii) $ax + by \in P$ for all $x, y \in P$ and non negative real number a, b;
- (iii) $x \in P$ and $-x \in P \Longrightarrow x = 0 \iff P \cap (-P) = \{0\}.$

Given a cone $P \subset E$, we define a partial ordering \leq on E with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write $x \ll y$ if $y - x \in intP$, where int P denotes the interior of P.

The cone *P* is called normal if there is a number K > 0 such that $x, y \in E, 0 \le x \le y$ implies $||x|| \le K ||y||$.

The least positive number satisfying the above is called the normal constant P. The cone p is called regular if every increasing sequence which is bounded from above is convergent that is, if $\{x_n\}$ is sequence such that $x_1 \le x_2 \le ... x_n \le ... \le y$ for some $y \in E$, then there is $x \in E$ such that $||x_n - x|| \to 0$ $(n \to \infty)$. Equivalently the cone p is regular if and only if every decreasing sequence which is bounded from below is convergent.

Lemma 2.2[2, 8]

- (i) Every regular cone is normal
- (ii) For each k > 1, there is a normal cone with normal constant K > k.

Definition 2.3[1]: Let X be a non – empty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies

- (i) 0 < d(x, y) for all $x, y \in X$ and d(x) = 0 if and only if x = y,
- (ii) d(x, y) = d(y, x) for all $x, y \in X$;
- (iii) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y \in X$.

Then d is called a cone metric, on X and pair (X, d) is called a cone metric space. It is obvious that cone metric spaces generalize metric space.

Example 2.4: Let $E = R^2$, $P = \{(x, y) \in E: x, y \ge 0\}$, X = R and $d: X \times X \to E$ defined by $d(x, y) = (|x - y|, \alpha | x, y|)$, where $\alpha \ge 0$ is a constant. Then (X, d) is a cone metric space.

Definition 2.5 [1]: Let (*X*, *d*) be a cone metric space, $x \in X$ and $\{x_n\}_{n \ge 1}$ a sequence in X. Then,

- (i) $\{x_n\}_{n \ge 1}$ converges to x whenever for every $c \in E$ with $o \ll c$, there is a natural number N such that $d(x_n, x) \ll c$ for all $n \ge N$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$, $(n \to \infty)$.
- (ii) $\{x_n\}_{n\geq 1}$ is said to be a Cauchy sequence if for every $c \in E$ with $o \ll c$, there is a natural number N such that $d(x_n, x_m) \ll c$ for all n, m $\geq N$.
- (iii) (X, d) is called a complete cone metric space if every Cauchy sequence in X is convergent

Definition 2.6 [8]: Cone *P* is called minihedral cone if sup $\{x, y\}$ exists for all $x, y \in E$ and strongly minihedral if every subset of E which is bounded from above has a supremum.

Lemma 2.7 [9]: Every strongly minihedral normal cone is regular.

3 Main results

Theorem3.1: Let (X, d) be a complete cone metric space and suppose the mapping $T_1, T_2: X \to X$ satisfy the contractive condition,

 $d(T_1x, T_2y) \le K[(T_1x, x) + d(x, y) + d(T_2y, y)]$ for all $x, y \in X$, where $0 \le k \le \frac{1}{2}$. Then T_1 and T_2 have a unique fixed point in X. And for any $x \in X$, iterative sequences $\{T_1^{2n+1}x\}$ and $\{T_2^{2n+2}x\}$ converse to the common fixed point.

Proof: For each $x_0 \in X$ and $n \ge 1$, set $x_1 = T_1 x_0$ and $x_{2n+1} = T_1 x_{2n} = T_1^{2n+1} x_0$. Similarly $x_{2n+1} = T_2 x_{2n+1} = T_2^{2n+2} x_0$. Then we have

$$d(x_{2n+1}, x_{2n}) = d(T_1 x_{2n}, T_2 x_{2n-1})$$

$$\leq K[d(T_1 x_{2n}, x_{2n}) + d(x_{2n}, x_{2n-1}) + d(T_2 x_{2n-1}, x_{2n-1})]$$

$$= K[d(x_{2n+1}, x_{2n}) + d(x_{2n}, x_{2n-1}) + d(x_{2n}, x_{2n-1})]$$
So, $d(x_{2n+1}, x_{2n}) = \frac{2k}{1-k} d(x_{2n}, x_{2n-1})$

$$= h d(x_{2n}, x_{2n-1}) \text{ where } h = \frac{2k}{1-k}.$$
For $n \geq m$

$$d(x_{2n}, x_{2m}) \leq d(x_{2n}, x_{2n-1}) + d(x_{2n-1}, x_{2n-2}) + ... + d(x_{2m+1}, x_{2m})$$

$$\leq (h^{2n-1} + h^{2n-2} + \dots + h^{2m}) d(x_1, x_0)$$

$$\leq \frac{h^{2m}}{1-h} d(x_1, x_0)$$

Let $0 \ll c$ be given, choose a positive integer N_1 , such that $\frac{h^{2m}}{1-h} d(x_1, x_0) \ll c$. For all $m \ge N_1$ Thus $d(x_{2n}, x_{2m}) \ll c$, for n > m. Therefore $\{x_{2n}\}$ is a Cauchy sequence in (X, d). Since (X, d) be a complete cone metric space, there exist $x^* \in X$ such that $x_{2n} \rightarrow x^*$. Now choose a positive integer N_2 such that $d(x_{2n+1}, x_{2n}) \ll \frac{c(1-k)}{3k}$, $d(x_{2n}, x^*) \ll \frac{c(1-k)}{3k}$ and $d(x_{2n+1}, x^*) \ll \frac{c(1-k)}{3}$ for all $n \ge N_2$. Hence for $n \ge N_2$ we have, $d(T_1x^*, x^*) \le d(T_1x_{2n}, T_1x^*) + d(T_1x_{2n}, x^*)$ $\leq K \left[d(T_1x_{2n}, x_{2n}) + d(x_{2n}, x^*) + d(T_1x^*, x^*) \right] + d(x_{2n+1}, x^*)$

$$\leq K \left[d(x_{2n+1}, x_{2n}) + d(x_{2n}, x^*) + d(T_1 x^*, x^*) \right] + d(x_{2n+1}, x^*)$$

$$d(T_1x^*, x^*) \leq \frac{1}{1-k} \left[k d(x_{2n+1}, x_{2n}) + k d(x_{2n}, x^*) + d(x_{2n+1}, x^*) \right]$$

$$\leq \frac{c}{3} + \frac{c}{3} + \frac{c}{3}.$$

$$= c$$

Thu, $d(T_1x^*, x^*) \ll \frac{c}{m}$ for all $m \ge 1.$ so, $\frac{c}{m} - d(T_1x^*, x^*) \in P$ for all $m \ge 1$. Since $\frac{c}{m} \to 0$ ($asm \to \infty$) and P is closed, $-d(T_1x^*, x^*) \in P$. But $d(T_1x^*, x^*) \in P$. Therefore $d(T_1x^*, x^*) = 0$ and so, $T_1x^*=x^*$. So x^* is a fixed point of T_1 . Now if y^* is another fixed point of T_1 , Then

$$d(x^*, y^*) \le k[d(T_1x^*, x^*) + d(T_1y^*, y^*) + d(x^*, y^*)]$$

= 0.

Hence $x^* = y^*$. Therefore the fixed point of T_1 is unique.

Similarly, it can be established that $T_2x^* = x^*$. Hence $T_1x^* = x^* = T_2x^*$. Thus x^* is the common fixed point of T_1 and T_2 .

Theorem3.2: Let (X, d) be a complete cone metric space and suppose the mapping $T_1, T_2 : X \to X$ satisfy the contractive condition,

 $d(T_1x, T_2y) \le K[(T_1x, y) + d(x, y) + d(x, T_2y)]$ for $x, y \in X$, where $0 \le k \le \frac{1}{2}$. Then T_1 and T_2 have a unique fixed point in X. And for any $x \in X$, iterative sequences $\{T_1^{2n+1}x\}$ and $\{T_2^{2n+2}x\}$ converse to the common fixed point.

Proof: For each $x_0 \in X$ and $n \ge 1$, set $x_1 = T_1 x_0$ and $x_{2n+1} = T_1 x_{2n} = T_1^{2n+1} x_0$. Similarly $x_{2n+1} = T_2 x_{2n+1} = T_2^{2n+2} x_0$. Then we have

$$d(x_{2n+1}, x_{2n}) = d(T_1 x_{2n}, T_2 x_{2n-1})$$

$$\leq K[d(T_1 x_{2n}, x_{2n-1}) + d(x_{2n}, x_{2n-1}) + d(x_{2n}, T_2 x_{2n-1})]$$

$$= K[d(x_{2n+1}, x_{2n-1}) + d(x_{2n}, x_{2n-1})]$$

$$\leq K[d(x_{2n+1}, x_{2n}) + d(x_{2n}, x_{2n-1}) + d(x_{2n}, x_{2n-1})]$$

So,
$$d(x_{2n+1}, x_{2n}) \leq \frac{2k}{1-k} d(x_{2n}, x_{2n-1})$$

= $h d(x_{2n}, x_{2n-1})$, where $h = \frac{2k}{1-k}$.

For n > m

$$d(x_{2n}, x_{2m}) \leq d(x_{2n}, x_{2n-1}) + d(x_{2n-1}, x_{2n-2}) + \dots + d(x_{2m+1}, x_{2m})$$

$$\leq (h^{2n-1} + h^{2n-2} + \dots + h^{2m}) d(x_1, x_0)$$

$$\leq \frac{h^{2m}}{1-h} d(x_1, x_0)$$

Let $0 \ll c$ be given, choose a positive integer N₁, such that $\frac{h^{2m}}{1-h} d(x_1, x_0) \ll c$. for all $m \ge N_1$. Thus, $d(x_{2n}, x_{2m}) \ll c$, for n > m. Therefore $\{x_{2n}\}$ is a Cauchy sequence in(X, d).

Since (X, d) be a complete cone metric space, there exist $x^* \in X$ such that $x_{2n} \to x^*$. Now choose a positive integer N_2 such that $d(x_{2n}, x^*) \ll \frac{c(1-k)}{4}$ and for all $n \ge N_2$. Hence for $n \ge N_2$ we have,

$$d(T_{1}x^{*}, x^{*}) \leq d(T_{1}x_{2n}, T_{1}x^{*}) + d(T_{1}x_{2n}, x^{*})$$

$$\leq K \left[d(T_{1}x_{2n}, x^{*}) + d(x_{2n}, x^{*}) + d(T_{1}x^{*}, x^{*}) + d(x_{2n+1}, x^{*}) \right]$$

$$\leq K \left[d(x_{2n+1}, x^{*}) + d(x_{2n}, x^{*}) + d(T_{1}x^{*}, x^{*}) + d(x_{2n}, x^{*}) + d(x_{2n+1}, x^{*}) \right]$$

International Journal of Applied Mathematical Research

$$d(T_1x^*, x^*) \leq \frac{1}{1-k} \left[2k d(x_{2n}, x^*) + kd(x_{2n+1}, x^*) \right] + d(x_{2n+1}, x^*)$$

$$\leq \frac{2c}{4} + \frac{c}{4} + \frac{c}{4}.$$

= cThus, $d(T_1x^*, x^*) \ll \frac{c}{m}$ for all $m \ge 1.$ so, $\frac{c}{m} - d(T_1x^*, x^*) \in P$ for all $m \ge 1$. Since $\frac{c}{m} \to 0(asm \to \infty)$ and P is closed, $-d(T_1x^*, x^*) \in P$. But $d(T_1x^*, x^*) \in P$. Therefore $d(T_1x^*, x^*) = 0$ and so, $T_1x^*=x^*$. Now if y^* is another fixed point of T_1 , Then

$$d(x^*, y^*) \le k[d(T_1x^*, x^*) + d(T_1y^*, y^*) + d(x^*, y^*)]$$

= 0.

Hence $x^* = y^*$. Therefore the fixed point of T_1 is unique. Similarly, it can be established that $T_2x^* = x^*$. Hence $T_1x^* = x^* = T_2x^*$. Thus x^* is the common fixed point of T_1 and T_2

References

- Huang Gaung, Zhang Xian." Cone metric spaces and fixed point theorems of contractive Mappings", J. math. Anal. Appl. 332 (2007) 1468-[1] 1476.
- [2] Sh. Rezapour, R. Hamlbarani, "Some notes on the paper- Cone metric spaces and fixedPoint theorems of contractive mappings,"J.Mthe, Anal.Appl. 345(2008) 719-724.
- [3] B. Repacki, On fixed point theorems of Maia type, publications De L' institute Mathematique 28 (1980)179-186.
- M. G. Maia, Un'Osservazione sullen contrazioni sullemetriche, Ren. Sem. Mat. Univ.Padova 40 (1968)139-143. S .D. Lin, "A common fixed point theorem in abstract spaces," Indian J. Pure appl. Math. 18(8) (1987) 685-690. [4]
- [5]
- M. S. Khan and M. A. Imdad," A Common fixed point theorem for a class of mappings", Indian J. Pure appl. Math.14, (1983), 1220-1227. [6]
- R. Tiwari and D.P.Shukla, "Fixed point results in cone metric spaces", Int J. of mathematical Archive 3(8), (2012) 3075-3078. [7]
- [8] K. Deimling, Nonlinear Functional Analysis springer-Verlag, Berlin, Heidelberg, New York, Tokyo,(1985).
- [9] T. Abdeljawad and E. Karapinar, "Quasi- cone metric spaces and generalizations of Caristi Kirk's theorem," Fixed point theory Appl., 2009 doi: 10, 1155/2009/574387.
- [10] T. Abdeljawad," Completion of cone metric spaces". Hacettepe J. Math. Stat. 39(1), (2010) 67-74.