A new generalized AOR iterative method for solving linear systems

  • Authors

    • Hamideh Nasabzadeh Ferdowsi University of Mashhad,Iran
    • F. Toutounian
    2013-09-17
    https://doi.org/10.14419/ijamr.v2i4.1116
  • Abstract

    In this paper, based on a block splitting of the coefficient matrix, we present a new generalized iterative method for solving the linear system  Ax = b. This method is well-defined even when some elements on the diagonal of  A are zero. Convergence analysis and comparison theorems of the proposed method are provided. Specially,the results shows that our new generalized AOR iterative method also, converges when  A is an H-matrix. And for L-matrices, our new generalized Jacobi iterative method is faster than the classical Jacobi. The Numerical examples are also given to illustrate our results.
  • Downloads

  • How to Cite

    Nasabzadeh, H., & Toutounian, F. (2013). A new generalized AOR iterative method for solving linear systems. International Journal of Applied Mathematical Research, 2(4), 439-451. https://doi.org/10.14419/ijamr.v2i4.1116

    Received date: 2013-07-11

    Accepted date: 2013-08-12

    Published date: 2013-09-17