A common random fixed point theorem and Application to Random Integral Equations
-
2014-02-22 https://doi.org/10.14419/ijamr.v3i1.1690 -
Abstract
The aim of this paper is to prove a fixed point theorem of a contraction mappings of a pair of weakly increasing mappings using an altering function in a partially ordered complete separable metric spaces. Our theorem is useful to determine a large of nonlinear problems. We discuss the existence of a common solution to a system of nonlinear random integral equations.
Keywords: Common random fixed point, Nonlinear integral random equation, Partially ordered metric spaces, Random variable, Weakly increasing.
-
References
- M. Abbas and G. Jungck, Common fixed point results for noncommuting map-pings without continuity in cone metric spaces, Journal of Mathematical Analysis and Applications, 341 (2008) 416-420.
- J. Achari, On a pair of random generalized nonlinear contractions, Int. J.Math. Math. Sci., 6(3) (1983) 467-475.
- Ya. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, Oper. Theory Adv. Appl., 98 (1997) 7-22.
- I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory and Applications, 2010(2010) 1-17. Article ID 621469.
- A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 72 (2010) 2238-2242.
- R. F. Arens, A topology for spaces of transformations, Ann. of Math., 47(2)(1946) 480-495.
- K. Balachandran and J. H. Kim, Existence of solutions of nonlinear stochastic Volterra Fredholm integral equations of mixed type, International Journal of Mathematics and Mathematical sciences, 2010 1-16. Artical ID 603819, doi:10.1155/2010/603819.
- I. Beg, Random fixed points of random operators satisfying semicontractivity conditions, Math. Japan., 46 (1997) 151-155.
- I. Beg, Approximaton of random fixed points in normed spaces, Nonlinear Anal., 51 (2002) 1363-1372.
- I. Beg, Random Coincidence and fixed points for weakly compatible mappings in convex metric spaces, Asian-European Journal of Mathematics, 2 (2009)171-182.
- I. Beg, M. Abbas, Common random fixed points of compatible random operators, Int. J. Math. and Mathematical Sciences, 2006 (2006) 1-15.
- I. Beg, N. Shahzad, Random fixed point theorems on product spaces, J. Appl. Math. Stochastic Anal., 6 (1993) 95-106.
- I. Beg, N. Shahzad, Random fixed point theorems for nonepansive and contractive type random operators on Banach spaces, J. Appl. Math. Stochastic Anal., 7 (1994) 569-580.
- A. T. Bharucha-Reid, Random Integral Equations, Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 9 (1972).
- A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82 (1976) 641-65.
- B. S. Choudhury, A common unique fixed point result in metric spaces involving generalized altering distances, Math. Commun., 10 (2005) 105-110.
- L. Debnath, P. Mikusinski, Introduction to Hilbert Spaces with Application, Academic Press, Boston (2005).
- B. C. Dhage, Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean Math. Soc., 36(3) (1999) 565-578.
- P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008) 1-8. Article ID 406368.
- O. Hans, Reduzierende zulliallige transformaten, Czechoslovak Math. J., 7 (1957) 154-158.
- O. Hans, Random operator equations, Proceedings of the fourth Berkeley Symposium on Math. Statistics and Probability II, PartI, (1961) 85-202.
- J. Harjani, k. Sadarangni, Fixed point theorems for weakly contraction mappings in partially ordered sets, Nonlinear Anal., 71 (2009) 3403-3410.
- J. Harjani, k. Sadarangni, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72 (2010) 1188-1197.
- S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67 (1979) 261-273.
- MC. Joshi, RK. Bose, Some Topics in Nonlinear Functional Analysis, Wiley, New York, (1984).
- M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30(1) (1984) 1-9.
- A. C. H. Lee and W. J. Padgett, On random nonlinear contraction, Math. Systems Theory, II (1977) 77-84.
- A. C. H. Lee and W. J. Padgett, A random nonlinear integral equation in population growth problems, Journal of Integral Equations, 2(1) (1980) 1-9.
- A. Mukherjee, Random transformations of Banach spaces, Ph. D. Dissertation, Wayne State University, Detroit, Machigan, (1986).
- W. J. Padgett, On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer. Math. Soc., 38(1) (1973) 625-631.
- W. J. Padgett and C. P. Tsokos, A random Fredholm integral equation, Proceedings of the American Mathematical Society, 33 (1972) 534-542.
- B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal.,47(4) (2001) 2683-2693.
- M. Saha and D. Dey, Some random fixed point theorems for (θ ;L)-weak contractions, Hacettepe Journal of Mathematics and Statistics, 41(6) (2012) 795-812.
- A. Spacek, Zufallige gleichungen, Czechoslovak Math. J., 5 (1955) 462-466.
- R. Subramaniam, K. Balachandran, and J. K. Kim, Existence of solutions of a stochastic integral equation with an application from the theory of epidemics, Nonlinear Functional Analysis and Applications, 5(1) (2000) 23-29.
- D. Szynal and S.Wedrychowicz, On solutions of a stochastic integral equation of the Volterra type with applications for chemotherapy, Journal of Applied Probability, 25(2) (1988) 257-267.
- K. K. Tan, X.Z. Yuan, Random fixed-point theorems and approximation in cones, J. Math. Anal. Appl., 185(2) (1994) 378-390.
- C. P. Tsokos, On a stochastic integral equation of the Volterra type, Math. Systems Theory 3 (1969) 222-231.
- C. P. Tsokos and W. J. Padgett, Random Integral Equations with Applications to Stochastic Sytems, Lecture Notes in Mathematics, Springer, Berlin, Germany, 233 (1971).
- C. P. Tsokos andW. J. Padgett, Random Integral Equations with Applications to Life Sciences and Engineering, Academic Press, New York, 1974.
- F. Yan, Y. Su and Q. Feng, A new contaction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Springer Open J., 152 (2012) 1-13.
- K. Yosida, Functional Analysis, Springer, Berlin (1965)
-
Downloads
Additional Files
-
How to Cite
Rashwan, R. A., & Albaqeri, D. M. (2014). A common random fixed point theorem and Application to Random Integral Equations. International Journal of Applied Mathematical Research, 3(1), 71-80. https://doi.org/10.14419/ijamr.v3i1.1690Received date: 2013-12-30
Accepted date: 2014-01-25
Published date: 2014-02-22