Existence, uniqueness solution for nonlinear mixed problem in two dimensional elasticity

Authors

  • Oudaani Jaouad enseignant
  • Enseignant au Lycee Qualifiant
  • Ajdir a Khenifra

DOI:

https://doi.org/10.14419/ijamr.v3i3.2965

Published:

2014-08-09

Abstract

The aim of this article is to minimises the stored energy function, of two dimensional elasticity with mixed boundary condition, in order, that the Euler's equilibrium equations of the Saint-Venant-Kirchhoff problem, has one and only one solution.

Keywords: Elasticity, Saint-Venant, Stored Energy.

References

J.M.Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch.Rational Mech.Anal. 63 (1976/77),337-403.

P.G.Ciarlet, Mathematical elasticity. Vol.I.Three dimensional elasticity, Studies in Mathe- matics and its Applications, 20,North-Holland, Amsterdam, 1988.

P.G.Ciarlet and G.Geymonat, Sur les lois de comportement en e´lasticite´ non line´aire co- mpressible, C.R.Acad. Sci. Paris, Se´r.II 295(1982), 423-426.

P.G.Ciarlet. Lecture on three-dimensional elasticity-Bombay-1983.

J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Engelewood Cliffs, 1983.

P.G.Ciarlet and P. Rabier. Les Equations de Von ka´rma´n. Lecture Notes in Mathematics; Vol 826. -Berlin, Heidelberg, New York Springer. 1980.

M. Ra¨ıssouli, Sur un proble`me mixte de Saint-Venant en e´lasticite´ non line´aire multidimen- sionnelle, The`se de doctorat, Universite´ Paul Sabatier, Toulouse, 1986.

J.L.Lions and E. Magenes, Proble`mes aux limites non homoge`nes et applications, Travaux et Recherches Mathe´matiques, No. 18, Vol. 2, Dunod, Paris, 1968.

M.Ra¨ıssouli and J.Oudaani. On the Saint-Venant problem in nonlinear elasticity with Dirichlet and Neuman boundary conditions. International Journal of Mathematics, Game Theory and Algebra. Volume 12, Number 4, pp. 325-338.

View Full Article: