Positive solutions for one-dimensional p-Laplacian boundary value problems with nonlinear parameter
-
2014-11-13 https://doi.org/10.14419/ijamr.v3i4.3168 -
Abstract
In this paper, we establish existence of positive solutions of the nonlinear problems of one - dimensional p-Laplacian with nonlinear parameter\\
$ \varphi_p( u'(t))' +a(t) f(\lambda, u)=0, \quad \ \ \ \ t \in (0,1) , \ \ \ u(0)= u(1)= 0.$\\
 where $a: \Omega\rightarrow\mathbb{R}$ is continuous and may change sign, $\lambda>0$ is a parameter, $f(\lambda,0)>0$ for all $\lambda>0$. By applying Leray-Schauder fixed point theorem we obtain the existence of positive solutions.
 Keywords : p-Laplacian, Positive solutions, Leray-Schauder fixed point theorem, nonlinear parameter.
-
References
- Yong-Hoon Lee, Inbo Sim; Global bifurcation phenomena for singular one-dimensional p-Laplacian; J. Differential Equations 229 (2006) 229 - 256.
- Justino Sanchez; Multiple positive solutions of singular eigenvalue type problems involving the one-dimensional p-Laplacian; J. Math. Anal. Appl. 292 (2004) 401 - 414.
- Ruyun Ma, et al;Existence of positive solutions to a class of elliptic boundary value problems with nonlinear parameter; to appear.
- D. D. Hai; Positive solutions to a class of elliptic boundary value problems; J. Math. Anal. Appl., 227 (1998), 195-199.
- R.P. Agarwal, H. L, D. ORegan; Eigenvalues and the one-dimensional p-Laplacian; J. Math. Anal. Appl. 266 (2002) 383-400.
- B. Im, E. Lee, Y.H. Lee; A global bifurcation phenomena for second order singular boundary value problems; J. Math. Anal. Appl. 308 (2005) 61 - 78.
- L. Kong, J. Wang; Multiple positive solutions for the one-dimensional p-Laplacian; Nonlinear Anal. 42 (2000) 1327-1333.
- L. Kong, Wenjie Gso; A singular boundary value problem for the one-dimensional p-Laplacian; J. Math. Anal. Appl 201 (1996) 851-866.
- J. Wang; The existence of positive solutions for the one-dimensional p-Laplacian; Proc. Amer. Math. Soc. 125 (1997) 2275-2283.
- Jean Mawhin; Lerary - Schauder degree: A half century of extensions and applications; Topological Methods in Nonlinear Analysis, 14, 1999, 195 - 228.
-
Downloads
-
How to Cite
Abubaker, A. O. M. (2014). Positive solutions for one-dimensional p-Laplacian boundary value problems with nonlinear parameter. International Journal of Applied Mathematical Research, 3(4), 529-533. https://doi.org/10.14419/ijamr.v3i4.3168Received date: 2014-07-13
Accepted date: 2014-08-10
Published date: 2014-11-13