Extension of the TOPSIS method to group decision-making

  • Authors

    • Sougoursi Jean Yves ZARE Joseph Ki -zerbo university
    • Zoïnabo SAVADOGO
    • Wambie ZONGO
    • Somdouda SAWADOGO
    • Blaise SOME
  • Group decision, extension-TOPSIS, geometric mean, quadratic mean, decision-making.
  • TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) is a very practical decision support method used in several areas of life. This method already exists in the literature in the context of a single decision maker. In order to adapt this method to group decision making, which can be easily applied in various situations, this work extended the TOPSIS method to group decision making using the quadratic mean and the geometric mean. In this work, numerical applications have been made and interesting results have been obtained.

  • References

    1. [1] F. Herrera, E. Herrera-Viedma, et J. L. Verdegay, ń Direct approach processes in group decision making using linguistic OWA operators ż, Fuzzy Sets and Systems, vol. 79, no 2, p. 175190, avr. 1996. [2] Fixmer, P., Brassac, Ch.!(2004). La décision collective comme processus de construction de sens, In C. Bonardi, N. Grégori, J.-Y. Menard, N. Roussiau (éds), Psychologie sociale appliquée. Emploi, travail, ressources humaines. Paris!: InPress, 111-118. [3] S. Khorshid, ń Soft consensus model based on coincidence between positive and negative ideal degrees of agreement under a group decisionmaking fuzzy environment ż, Expert Systems with Applications, vol. 37, no 5, p. 39773985, mai 2010 [4] Zoïnabo Savadogo, Longin Somé and Abdoulaye Compaoré: On new aggregation functions of additive value within the framework of the group decision , Advances in Differential Equations and Control Processes, Volume 20, Number 2, 2019, Pages 129-141. [5] Zoïnabo Savadogo, Ruffin-BenoîtM.Ngoie, Berthold E.-L. Ulungu, BlaiseSomé: an aggregation function to solve multicriteria ranking problem involving several decision makers, International Journal of applied mathematical research, 3(4):511-517, 2014. [6] Wambié Zongo, Zoïnabo Savadogo, Sougoursi Jean Yves Zaré, Somdouda Sawadogo and Blaise Somé METHOD OF SOLVING GROUP DECISION PROBLEMS BY THE ARITHMETIC MEAN AND THE MEAN DEVIATION, International Journal of Numerical Methods and Applications, volume 20, Number 2, 2021, pages 95-113 [7] Hwang, C.L. and Yoon, K., (1981) Multiple Attribute Decision Making: Methods and Applications (Berlin, Springer-Verlag). [8] Yasmina BOUZAROUR-AMOKRANE, Ayeley TCHANGANI,François PERES 1Université De Toulouse / Université De Toulouse III- Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, [9] I.J.Pérez, R.Wikstrm, J.Mezei, C. Carlsson, K.Anaya, E.HerreraViedma Linguistic Consensus Models Based on a Fuzzy Ontology Information Technology and Quantitative Management , ITQM 2013, Procedia Computer Science 17 ( 2013 ) 498 505 [10] Bowen Zhang, Yucheng Dong, Consensus Rules with minimum adjustements for multiple attribute group decision making, Elsevier, Procedia Computer Science 17(2013)473-481 [11] R. GINTING, Intégration du système daide multicritère et du système dintélligence économique dans lère concurrentielle, 11/01/2000 application dans le choix de partenaires en Indonésie ,thèse, Université de droit et des sciences dAix-Marseille. [12] Maroi Agrebi. Méthodes d'aide à la décision multi-attribut et multiacteur pour résoudre le problème de sélection dans un environnement certain/incertain: cas de la localisation des centres de distribution. Intelligence artificielle[cs.AI].Université de Valenciennes et du Hainaut-Cambresis; Université de Sfax (Tunisie), 2018. Français. NNT: 2018VALE0013. tel-01880087

      [13] Philippe Vincke , l'aide multicritère à la décision, 1er Ed, Ed de l’universitéde Bruxelles, Belgique, 1989, p18.

  • Downloads

  • How to Cite

    ZARE, S. J. Y., SAVADOGO, Z., ZONGO, W., SAWADOGO, S., & SOME, B. (2022). Extension of the TOPSIS method to group decision-making. International Journal of Applied Mathematical Research, 10(2), 53-62. https://doi.org/10.14419/ijamr.v10i2.31850