Modelling silicon etching using inverse methods

  • Authors

    • Eric Kincanon Gonzaga University
    2022-02-19
    https://doi.org/10.14419/ijamr.v11i1.31930
  • Inverse Scattering, Gelfand-Levitan Equation, Reflection Coefficient, One-Dimensional Scattering.
  • This paper considers a real-world application of a recently presented alternative form of the Gelfand-Levitan equation. Here is considered the case of potential in the plasma above silicon during the etching process. It is shown that although standard methods have significant challenges, the alternative form of the Gelfand-Levitan equation gives a straightforward way to determine the reflection coefficient from an assumed potential.

     

     

  • References

    1. [1] D.G. Retzloff and J.W. Cobern, American Vacuum Society Monograph, 1982, private communication.

      [2] K. Chadan and P. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer-Verlag, (1977). https://doi.org/10.1007/978-3-662-12125-2.

      [3] I. Kay and H.E. Moses, Inverse Scattering Papers: 1955-1963, Math Sci Press, (1982).

      [4] K. Budden, Radio Waves in the Ionosphere, Cambridge University Press (1961).

      [5] A.K. Jordan and S. Ahn, “Inverse Scattering Theory and Profile Reconstructionâ€, IEE,126, (1979),945-962. https://doi.org/10.1049/piee.1979.0175.

      [6] C.S. Morawetz, “Computations with the nonlinear Helmholtz equationâ€, Comp. and Math. Appl.,7, (1981),319-333.

      [7] B. Defacio and J.H. Rose, “Inverse-scattering theory for the non-spherically-symmetric three-dimensional plasma wave equationâ€, Phys. Rev.,31, (1985), 897-912. https://doi.org/10.1103/PhysRevA.31.897.

      [8] R.G. Newton, “High frequency analysis of the Marchenko equationâ€, J. Math. Phys., 23, (1982), 594-613. https://doi.org/10.1063/1.525396.

      [9] J.H. Rose, M. Cheney and B. Defacio, “A perturbation method for inverse scatteringâ€, J. Math. Phys., 25, (1984), 2995-3006. https://doi.org/10.1063/1.526015.

      [10] J.H. Rose, M. Cheney and B. Defacio,†“Three-dimensional inverse scattering: plasma and variable velocity wave equations,†J. Math. Phys., 26, (1985), 345-353. https://doi.org/10.1063/1.526705.

      [11] L.D. Faddeev, “The inverse problem in the quantum theory of scatteringâ€, J. Math. Phys., 4, (1963), 72-85.

      [12] R.G. Newton, “Inverse scattering. II. Three dimensionsâ€, J. Math. Phys., 25, (1980), 493-515.

      [13] P. Deift and E. Trubowitz, “Inverse scattering on the lineâ€, Comm. Pure Appl. Math 32 (1979), 121-251. https://doi.org/10.1002/cpa.3160320202.

      [14] P.C. Sabatier, “Rational reflection coefficients and inverse scattering on the lineâ€, Nuovo Cimento, 78, (1983), 1971-1996. https://doi.org/10.1007/BF02721099.

      [15] E. Kincanon, “Alternative Form of the Gelfand-Levitan Equationâ€, IJAMR, 10, (2021), 28-31. https://doi.org/10.14419/ijamr.v10i2.31842.

  • Downloads

  • How to Cite

    Kincanon, E. (2022). Modelling silicon etching using inverse methods. International Journal of Applied Mathematical Research, 11(1), 8-10. https://doi.org/10.14419/ijamr.v11i1.31930