No-regret Control for a degenerate population model in divergence form with missing birth rate: a nonlinear case
-
2022-08-27 https://doi.org/10.14419/ijamr.v11i2.32104 -
Population dynamics, degenerate equation, incomplete data, Low-regret control, No-regret control -
Abstract
We deal with a degenerate population equation in divergence form depending on time, on age and on space. In this model, the birth rate is unknown. We focus on the No-regret control and on the Low-regret control concepts of J. L. Lions treated in [Contrôle à moindres regrets des systèmes distribués, C. R. Acad. Sci.Paris Ser. I Math., SIAM J. Control Optim. ,1992, Vol 315, pp. 1253–1257] and in [Duality arguments for multi-agents least regret control, Institut de France, 1999] to treat the problem. For this purpose, we prove first the existence of the Low-regret control and the No-regret control. And we use a suitable Hilbert space to show that the No-regret control is the limit of a family of adapted Low-regret controls defined by a quadratic pertubation and previously used by Nakoulima et al. in [Perturbations à moindres regrets dans les systèmes distribués à données manquantes, C. R. Acad. Sci.Paris Ser. I Math., 2000, Vol 330, pp. 801–806]. Then we give a singular optimality system for the family of adapted Low-regret controls and for the No-regret control.
-
References
[1] B. Ainseba, M. Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl. 248 (2000), 455-474.
[2] B. Ainseba, M. Iannelli, Exact controllability of a nonlinear population-dynamics problem, Differential Integral Equations 16 (2003), 1369–1384.
[3] B. Ainseba, S. Anit¸a, Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differential Equations (2004), 1–11.
[4] B. Ainseba, Y. Echarroudi and L. Maniar, Null controllability of a population
dynamics with degenerate diffusion, Journal of differential and integral equations, Vol. 26, Number 11/12(2013), pp.1397–1410.
[5] G. Fragnelli, P. Martinez, J. Vancostenoble, Qualitative properties of a population dynamics system describing pregnancy, Math. Models Methods Appl. Sci. 15 (2005), 507–554.
[6] G. Fragnelli, Carleman estimates and null controllability for a degenerate population model, Journal de Mathématiques Pures et Appliquées, 115 (2018), 74-126.
[7] G. Fragnelli, Controllability for a population equation with interior degeneracy, Pure Appl. Funct. Anal. 4, 803–824 (2019) 74.
[8] G. Fragnelli, Null controllability for a degenerate population model in divergence form via Carleman estimates, Electron. J. Qual. Theory Differ. Equ.,2019, Vol 50, 1–11.
[9] G. F.Webb, Population models structured by age, size, and spatial position. Structured population models in biology and epidemiology, 149, Lecture Notes in Math. 1936, Springer, Berlin, 2008.
[10] I. Boutaayamou and Y. Echarroudi, Null controllability of population dynamics with interior degeneracy, Electronic Journal of Differential Equations, Vol. 2017(2017), No. 131, pp.1–21.
[11] J. Birgit and A. Omrane, Optimal control for age-structured population dynamics of incomplete data, J. Math. Anal. Appl., 2010, Vol 370, 42-48.
[12] J.-L. Lions, Contrôle à moindres regrets des systèmes distribués, C. R. Acad. Sci.Paris Ser. I Math., SIAM J. Control Optim. ,1992, Vol 315, 1253-1257.
[13] L.J. Savage, The Foundations of Statistics, 2nd Edition, Dover, 1972.
[14] M. Birba and O. Traoré, Null Controllability of a System of Degenerate Nonlinear Coupled Equations Derived from Population Dynamics, Nonlinear Analysis, Geometry and Applications, 2019, 35–66
[15] M. Langlais, A nonlinear problem in age-dependent population diffusion, Siam J. Math. Anal. 16 (1985), 510–529.
[16] M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups,
Birkhauser Advanced Texts Basler Lehrbucher Series, 2009.
[17] O. Nakoulima and A. Omrane and J. Velin, Perturbations à moindres regrets dans les systèmes distribués à données manquantes, C. R. Acad. Sci.Paris Ser. I Math., 2000, Vol 330, 801-806.
[18] O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Sci. (2006), 1–20.
[19] S. Anita, Analysis and control of age-dependent population dynamics, Mathematical Modelling: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 11 (2000).
[20] Y. Echarroudi, L. Maniar, Null controllability of a model in population dynamics, Electron. J. Differential Equations 2014 (2014), 1–20.
[21] Y. He, B. Ainseba, Exact null controllability of the Lobesia botrana model with diffusion, J. Math. Anal. Appl. 409 (2014), 530–543.
-
Downloads
-
How to Cite
Sana, M., Sawadogo, S., & Tao, S. (2022). No-regret Control for a degenerate population model in divergence form with missing birth rate: a nonlinear case. International Journal of Applied Mathematical Research, 11(2), 14-34. https://doi.org/10.14419/ijamr.v11i2.32104Received date: 2022-06-14
Accepted date: 2022-07-17
Published date: 2022-08-27