Proximal Point Algorithm for Nonexpansive Mappings in Hadamard Spaces Based on SRJ Iteration Process
DOI:
https://doi.org/10.14419/ijamr.v12i1.32376Published:
2023-11-05Abstract
In this paper, We provide a new modified proximal point approach utilizing fixed point iterates of nonexpansive mappings in Hadamard space and show that the sequence created by our iterative process converges to a minimizer of a convex function and a fixed point of mappings. Finally, we present a numerical illustration for supporting our main result. Our results obtained in this paper improve, extend and unify results of Khan-Abbas [23], Cholamjiak et al. [10] and Dashputre et al. [11].
References
R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton’s method on Riemannian manifolds and a geometric model for human spine, IMA Journal of Numerical Analysis, 22(3)(2002), 359-390, DOI: 10.1093/imanum/22.3.359.
L. Ambrosio, N. Gigli and G. Savare, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ´ETH Zurich, Birkh ¨ auser, Basel, (2008), DOI: 10.1007/978-3-7643-8722-8. ¨
D. Ariza-Ruiz, L. Leu stean and G. Lopez-Acedo, Firmly nonexpansive mappings in classes of geodesic spaces, ´ Transactions of the American Mathematical Society, 366 (2014), 4299 – 4322.
M. Bacak, Computing medians and means in Hadamard spaces, ´ SIAM Journal on Optimization, 24(3)(2014), 1542 – 1566, DOI: 10.1137/140953393.
M. Bacak, The proximal point algorithm in metric spaces, ´ Israel Journal of Mathematics, 194(2013), 689 – 701, DOI: 10.1007/s11856-012-0091-3.
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer Science and Business Media, 319(2013), URL:
https://link.springer.com/book/10.1007/978-3-662-12494-9.
K.S. Brown and K.S Brown, Buildings, Springer, (1989).
F. Bruhat and J. Tits, Groupes Reductifs Sur Un Corps local, ´ Publications Mathematiques de l’Institut des Hautes ´ Etudes Scientifiques, 44(1)(1972), 5–251, DOI: 10.1007/BF02715544.
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, American Mathematical Society, Providence, Rhode Island, 33(2001), DOI: 10.1090/gsm/033.
P. Cholamjiak, A. A. N. Abdou and Y. J. Cho, Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory and Applications, 2015(2015), 227, 1– 13 DOI: 10.1186/s13663-015-0465-4.
S. Dashputre, R. Tiwari and J. Shrivas, A new iterative algorithm for generalized (α, β)-nonexpansive mapping in CAT (0) space, Adv. Fixed Point Theory, 13(2023), https://doi.org/10.28919/afpt/8084.
S. Dhompongsa and B. Panyanak, On-convergence theorems in CAT(0) spaces, Computers & Mathematics with Applications, 56(10)(2008), 2572–2579, DOI: 10.1016/j.camwa.2008.05.036.
S. Dhompongsa, W.A. Kirk, and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, Journal of Nonlinear and Convex Analysis, 8(2007), 35 – 45.
S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear analysis: theory, methods & applications, 65(4)(2006), 762–772, DOI: 10.1016/j.na.2005.09.044.
O. P. Ferreira and P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization, 51(2)(2002), 257 – 270, DOI:
1080/02331930290019413.
H. Fukhar-ud-din, Strong convergence of an Ishikawa-type algorithm in CAT(0) spaces, Fixed Point Theory and Applications, 207(2013), DOI: 10.1186/1687-1812-2013-207.
K. Goebel and R. Simeon, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Dekker, (1984).
M. Gromov, Hyperbolic groups, In: Essays in Group Theory, S. M. Gersten (eds), Mathematical Sciences Research Institute Publications, 8)(1987), DOI: 10.1007/978-1- 4613-9586-7-3.
O. Guler, On the convergence of the proximal point algorithm for convex minimization, ¨ SIAM Journal on Control and Optimization, 29(2)(1991), 403 – 419, DOI: 10.1137/0329022.
B. Halpern, Fixed points of nonexpanding maps, Bulletin of the American Mathematical Society, (1967), 957–961, DOI: 10.1090/S0002-9904-1967- 11864-0.
J. Jost, Convex functionals and generalized harmonic maps into spaces of non positive curvature, Commentarii Mathematici Helvetici, 70(1995), 659 – 673, DOI: 10.1007/BF02566027.
S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, Computers & Mathematics with Applications, 106(2)(2000), 226 – 240, DOI: 10.1006/jath.2000.3493.
S. H. Khan and M. Abbas, Strong and ∆-convergence of some iterative schemes in CAT(0) spaces, Computers and Mathematics with Applications, 61(1)(2011), 109 – 116, DOI: 10.1016/j.camwa.2010.10.037.
W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Colecc. Abierta. University Seville Secretary of Publications, Seville, Spain, 64(2003), 195 – 225.
W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Analysis: Theory, Methods and Applications, 68(13)(2008), 3689 – 3696, DOI: 10.1016/j.na.2007.04.011.
T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0) spaces, International Journal of Mathematical Analysis, 3(25-28)(2009), 1305 – 1315, URL: http: //cmuir.cmu.ac.th/jspui/handle/6653943832/59721.
W. Laowang and B. Panyanak, Strong and ∆-convergence theorems for multivalued mappings in CAT(0) spaces, Journal of Inequalities and Applications, 2009(2009), Article ID 730132, DOI: 10.1155/2009/730132.
C. Li, G. Lopez and V. Mart ´ ´ın-Marquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, ´ Journal of the London Mathematical Society, 79(3)(2009), 663 – 683, DOI: 10.1112/jlms/jdn087.
T. C. Lim, Remarks on some fixed point theorems, Proceedings of the American Mathematical Society, 60(1976), 179-182, DOI: 10.1090/S0002-9939- 1976-0423139-X.
B. Martinet, Regularisation d’in ´ equations variationnelles par approximations successives, ´ Revue franc¸aise d’informatique et de recherche operationnelle ´, 4(R-3)(1970), 154 – 158,
U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Communications in Analysis and Geometry, 6(2)(1998), 199 – 253, DOI: 10.4310/CAG.1998.v6.n2.a1.
A. Panwar, Jyoti, P. Mor and Pinki, Proximal point algorithm based on AP iterative technique for nonexpansive mappings in CAT(0) spaces, Communications in Mathematics and Applications, 14(1)(2023), 117 – 129, DOI: 10.26713/cma.v14i1.1831
E. A. P. Quiroz and P. R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on hadamard manifolds, Journal of Convex Analysis, 16(1)(2009), 49 – 69.
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14(5)(1976), 877 – 898, DOI: 10.1137/0314056.
S. T. Smith, Optimization techniques on Riemannian manifolds, Hamiltonian and gradient flows, algorithms and control, Fields Institute Communications, 3(1994), 113 – 136.
C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications book series, 297(1994), DOI: 10.1007/978-94-015-8390-9.
J. H. Wang and G. Lopez, Modified proximal point algorithms on Hadamard manifolds, ´ Optimization, 60(6)(2011), 697 – 708, DOI:
1080/02331934.2010.505962.
License
Authors who publish with this journal agree to the following terms:
                          [1]           Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
                          [2]           Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
                          [3]           Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).