Mathematical modelling and analysis of Kidnapping dynamics

  • Authors

    • Salisu Usaini Aliko Dangote University of Science and Technology, Wudil
    • Sani Rabiu
    • Adamu Shitu Hassan
    2024-02-08
    https://doi.org/10.14419/ed2vre29
  • Abstract

    The problem of kidnapping as a social menace to a society is increasing in some African countries such as Nigeria. We therefore proposed a new deterministic mathematical model for the dynamics of Kidnapping in a community. This menace is considered like a two strains communicable disease with kidnapping propagation mission by kidnappers as one strain and adoption mission for kidnapped victims as the other strain to assess the impact of super-infection. The model exhibits four equilibrium points each of which is unique and asymptotically stable both locally and globally under certain conditions. We obtain the kidnapping propagation number  where  is the propagation number associated with strain . Another important threshold parameters associated with respective strains 1 and 2 are  and . Indeed, we show that at most one strain invades the population if one of these parameters is less than unity. while the two strains coexist at endemic state when both  and  are greater than unity. The global stability results of the model equilibria are established by numerical simulations. This simulations results indicate that the super-infection destabilizes the coexistence equilibrium.

  • References

    1. A. B. Okrinya, ``A Mathematical Model on Kidnapping", Journal Scientific and Engineering Research, Vol.5, (2018), pp.102-112.
    2. A. B. Okrinya, J. I. Consul, ``Mathematical Modelling of Kidnapping with Rehabilitation", Journal of Scientific and Engineering Research, Vol.5, (2018), pp.195-205.
    3. A. Goyal, J. B. Shukla, A. K. Misra, A. Shukla, ``Modeling the Role of Government Efforts in Controlling Extremism in a Society", Mathematical Methods in Applied Sciences, Vol.38, No.17, (2014), pp.4300-4316.
    4. A. J. Olajide, ``Asymptotic Stability Of Illicit Drug Dynamics with Banditry Compartment", Applied Mathematics and Information Sciences, Vol.14, No.5, (2020), pp.791-800, http://dx.doi.org/10.18576/amis/140506}
    5. A. Zeb, A. Bano, E. Alzahrani, G. Zaman, ``Dynamical analysis of cigarette smoking, model with a saturated incidence rate", AIP Advances, Vol.4, (2018), pp.2158-3226.
    6. B. Ibrahim, J. I. Mukhtar, ``An Analysis of the Causes and Consequences of Kidnapping in Nigeria", AFRREV an International Journal, Vol.11, No.4, (2017), pp.134-143.
    7. Catlin Group (2012), Kidnap and ransom today, A report by Catlin Group Limited. London, UK.
    8. C. C. Castillo, H. Thieme, ``Asymptotically Autonomous Epidemic Models", BU-1248-M, (1994).
    9. C. C. Castillo, F. Zhilan, ``To Treat or not to Treat: The Case Study of Tuberculosis", Journal of Mathematical Biology, Vol.35, (1997), pp.627-656.
    10. C. C. McCluskey, P. Van den Driessche, ``Global Analysis of Two Tuberculosis Models", Journal of Dynamics and Differential Equations, Vol.16, (2004), pp.1040-7294.
    11. D. J. Bartholomew, Stochastic models for social processes, Wiley, London, 1967.
    12. G. Amengol, L. Jaume, S. Jorge, ``Global Asymptotic Stability of Differential Equations in Plane", Journal of Differential Equations, Vol.91, (1991). pp.327-335.
    13. G. G. Parra, B. Chen-Charpentier, H. V. Kojouharov, ``Mathematical Modeling of Crime as a Social Epidemic", Journal of Interdisciplinary Mathematics, Vol.21, (2018), pp.623-643.
    14. J. Carlos, A. Herrero, M. Primicerio, ``A Mathematical Model of a Crimal-Prone Society", Discrete and Continuous Dynamical System Series, Vol.4, (2011), pp.193-207. DOI:10.3934/dcdss.2011.4.193
    15. J. Sooknanan, B. Bhatt, D. Comissiong, ``Catching a Gang-A Mathematical Model of the Spread of Gangs in a Population Treated as an Infectious Disease", International Journal of Pure and Applied Mathematics}, Vol.83, (2013), pp.25-43.
    16. J. Lawal, A. Sule, A. Sani, ``Modeling and Optimal Control Analysis on Armed Banditry and Internal Security in Zamfara State", European Journal of Theoretical and Applied Sciences, Vol.1, No.5, (2023), pp.1062-1075. DOI: 10.59324/ejtas.2023.1(5).93}
    17. Kids live safe. www.kidslivesafe.com/child-safety-abduction vs kidnapping. Accessed Jully 15, 2019
    18. M. Gladwell, The Tipping Point: How Little Things can Make a Big Difference Boston: Little Brown 0316346624 (ISBN), 2000
    19. M. Granovetter, ``Threshold models of collective behavior", American Journal of Sociology, Vol.83, No.6, (1978), pp.1420-1443.
    20. M. G. Roberts, J. A. P. Heesterbeek, ``Characterizing the Next-Generation Matrix and Basic Reproduction Number in Ecological Epidemiology", Journal of Mathematical Biology, Vol.66, No.4-5, (2013), pp.1045-64. DOI 10.1007/s00285-012-0602-1}
    21. M. L. Smah, ``Mathematical model of terrorism: case study of Boko Haram", International Journal of Mathematical Modelling and Numerical Optimisation, Vol.12, No.1, (2022), pp.88-112.
    22. Nigeria's Growing kidnapping industry now target the poor, www.weetracker.com/2020-05-30/Nigerias-Growing-kidnapping-industry-now-targets-the-poor. Accessed December 29, 2023
    23. OSAC analysis, www.osac.gov/content/report/ec9e4092/cbf6-4fb7-b301-15f4ae16. Accessed July 15, 2019
    24. O. M. Ibrahim, D. Okuonghae, M. N. O. Ikhile, ``Optimal control model for criminal gang population in a limited-resource setting", International Journal of Dynamics and Control, Vol.11, (2023), pp.835-850. https://doi.org/10.1007/s40435-022-00992-8
    25. O. Sharomi, A.B. Gumel, ``Curtailing Smoking Dynamics: A Mathematical Modeling Approach", Applied Mathematics and Computation, Vol.195, (2008), pp.475-499.
    26. P. O. O. Ottuh, V. O. Aitufe, ``Kidnapping and moral society: An ethical-religious evaluation of the Nigerian experience", European Scientific Journal, Vol.10, No.14, (2014), pp.420-434.
    27. P. Van den Driessche, J. Watmough, ``Reproduction Numbers and Sub-Threshold Endemic Equalibria for Compartmental Models of Disease Transmission", Mathematical Biosciences, Vol.180, (2002), pp.29-48.
    28. P. Van den Driessche, ``Reproduction Numbers of Infectious Disease Models", Infectious Disease Modelling, Vol.2, No.3, (2017) pp.288-303. doi: 10.1016/j.idm.2017.06.002.
    29. R. Naresh, A. Tripathi, D. Sharma, ``A Nonlinear HIV/AIDS Model with Contact Tracing", Applied Mathematics and Computation, Vol.217, (2011), pp.9575-9591.
    30. S. Busenberg, P. Van den Driessche, ``Analysis of a Disease Transmission Model in a Population with Varying Size", Journal of Mathematical Biology, Vol.20, (1990), pp.257-270.
    31. S. P. Blythe, K. Cooke, C. C. Castillo, ``Autonomous Risk-Behavior Change, and Non Linear Incidence Rate, in Models of Sexually Transmitted Diseases", BU-1048-M, (1991), pp.1-48.
    32. S. Usaini, A. L. Lloyd, R. Anguelov, S. M. Garba, ``Dynamical behavior of an epidemiological model with a demographic Allee effect", Mathematics and Computers in Simulation, Vol.133, (2017), pp.311-325.
    33. T. C. Porco, S. M. Blower, ``HIV vaccines: The effect of the mode of action on the coexistence of HIV subtypes", Mathematical population Studies, Vol.8, No.2, (2000), pp.205-229. DOI:10.1080/08898480009525481
    34. W. A. Dodo, ``The causes and remedies of kidnapping in Nigeria", The Nigerian Academic Forum, Vol.19, No.1. (2010), pp.1-4.
    35. Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, ``Global Dyanamics of a Mathematical Model on Smoking, Hindawi Publishing Corporation Abstract IRSN Applied Mathematics. (2014) http://dx.doi.org/10.1155/2014/847075.
  • Downloads

  • How to Cite

    Usaini, S., Rabiu, S., & Shitu Hassan, A. (2024). Mathematical modelling and analysis of Kidnapping dynamics. International Journal of Applied Mathematical Research, 13(1), 1-11. https://doi.org/10.14419/ed2vre29