Benchmark portfolio selection and efficient diversification of Congolese Bank
-
2024-04-05 https://doi.org/10.14419/ka8jk962 -
Bank, Portfolio Management; AHP; TOPSIS; Multi-Criteria Decision Aiding; Multi-Criteria Analysis; Credit; Risk; Profitability; Joint Analysis; Student Test. -
Abstract
The study, based on available data on the Congolese banking sector has succeeded in establishing a benchmark of the ideal distribution of a bank’s credit portfolio by sector in order to improve its profitability while reducing the risk of default.
This benchmark has been established on an exclusively quantitative basis on the results of three distinct methods of multi-criteria decision aid: AHP and TOPSIS. It can help banks to assess of the quality of their credit portfolio (or, at least, their sectorial allocation) relative to the latter, which is derived from the aggregates of the entire banking sector. It would benefit from being usefully combined with a more qualitative analysis that escapes the spectrum of this study taking into account the quality and availability of the guarantee, track record, etc.
The Student t-test, as the correlation coefficient has shown that the results of our different methods are in perfect correlation with the data of the bank, and the difference of the discrepancies between our methods and the data of the bank are random, that is to say not significant.
-
References
- MacLean L.C. and Ziemba W.T.: Handbook of the Fundamentals of Financial Decision Making, World Scientific, May 10, 2013. https://doi.org/10.1142/8557.
- Nakhla M., La pratique de le recherche opérationnelle en gestion, Presses des Mines – Transvalor, 24/11/2022.
- Ashford R.W., Berry R.H., Dyson R.G., Operational Research and Financial Management, European Journal of Operational Research (1988), 36, p. 143-152. https://doi.org/10.1016/0377-2217(88)90419-5.
- Ekeland I.,"Finance: un nouveau domaine des mathématiques appliquées",Revue Française de Gestion (1993), p. 44-48.
- Roy B., "Des critéres multiples en recherche opérationnelle: Pourquoi?", Operational Research Õ87, Rand, G.K. (Ed.), Elsevier Science Publishers, North Holland, 1988, p. 829-842.
- Gouiaa R. and Ouedraogo M.: L’impact de la gestion du risque de crédit sur la performance des banques commerciales canadiennes, Revue Organisations & territoires, Volume 31, Number 1, 2022,p 69-91. https://doi.org/10.1522/revueot.v31n1.1449.
- Monnier P., Le Petit Banque « L’Essentiel en Bref », Dunod, 22/02/2023.
- Azzouz E., La gestion du risque crédit par la méthode scoring: Cas de la Banque Populaire de Rabat-Kenitra. REMAREM, 2009, pp.291.
- Zopounidis C., La gestion du capital risque, Paris, Economica, 1990.
- Zopounidis C., Evaluation du risque de défaillance de l'entreprise: Méthodes et cas d'application, Paris, Economica, 1995.
- Jacquillat B. et Solnik B., Marchés financiers : gestion de portefeuille et des risques, Paris, Bordas-Dunod, 1990.
- Badaj F., L’aide multicritère à la décision et la structure financière des PME. International Journal of Accounting, Finance, Auditing, Management and Economics. Volume 2, Issue 5 (September, 2021), ISSN: 2658-8455.
- Kapiamba Nt, Ulungu E.L. and Mubenga K.: Simulated Annealing vs Genetic Algorithm to Portfolio Selection. International Journal of Scientific and Innovative Mathematical Research. Vol 3, Issue 5, May 2015, PP 18-30.
- Mark T. Leung and al. : Using investment portfolio return to combine forescasts : A multiobjective approach. European Journal of Op-erational Research 134,84-102, 2001. https://doi.org/10.1016/S0377-2217(00)00241-1.
- Roy B. et Bouyssou D., Aide multicritère à la décision : méthodes et cas , Paris, Economica,1993.
- Hurson C. and Zopounidis C. : Gestion de portefeuille et Analyse multicritère. Edition Economica 1997.
- Markowitz H. :Portfolio selection. Journal of Finance 7:77-91, 1952. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.
- Markowitz H.M.: Portfolio Selection, efficient diversification of investment. New Haven and London, Yale University press, second printing, 1970.
- Kapiamba NT, Mubenga K, Ulungu E.L : Revue des principales méthodes de résolution du problème d’affectation en présence de cri-tères multiples. Annales de la Faculté des Sciences (UNIKIN). Vol 1, (2016) 97-104.
- Meyer, P., Contributions au processus d’Aide Multicritère à la Décision : Méthodes, Outils et Applications, Habilitation à Diriger des Recherches en Informatique, Université Paris Dauphine, 2013.
- Hurson Ch., Zopounidis C., "On the Use of Multicriteria Decision Aid Methods to Portfolio Selection", The Journal of Euro-Asian Management (1995), vol. 1, no.2, 69-94.
- Snopek L. and Lhabitant F.S. : Guide complet de construction et de gestion de portefeuille, Maxima - 27 Septembre 2018.
- Siles M.V. : Guide de base planification de crédit et gestion de portefeuille (Analyse du risque de crédit). Broché - 3 Novembre 2017.
- Rakotoarivelo J.B.: Analyse comparative de méthodes multicritère d’aide à la décision pour le secteur financier, Rapport de recherche IRIT n° IRIT/RR-2015-07-FR ; 22 Mai 2015. UNIVERSITE PAUL SABATIER DE TOULOUSE
- Aftalion F., Poncet P. and Portait R.: La théorie moderne du portefeuille. Collection Que sais-je? Presse Universitaire de France (PUF), Décembre 1998.
- Despotis D.K, Yannacopoulos D. et Zapounidis C., « A review of the UTA multicriteria method and some improvement », foundations of computing and Decision Sciences (Vol. 15, n°2, 1990), p.33-76.
- Wang, Y.M, Elhag, T.M.S. : Fuzzy TOPSIS Method Based on Alpha Level Sets with an Application to Bridge Risk Assessment. Expert Systems with Applications, 31, 309 – 319 (2006). https://doi.org/10.1016/j.eswa.2005.09.040.
- Olcer, A.I, Odabasi, A.Y. : A New Fuzzy Multiple Attributive Group Decision Making Methodology and its Application to Popula-tion/Maneuvering System Selection Problem. European Journal of Operational Research, 166, 93 – 114 (2005). https://doi.org/10.1016/j.ejor.2004.02.010.
- Solin M.M., Alamsyah A., RikuMahu B. and Saputra M.A.A., Forcasting Portfolio Optimization using Artificial Neural Network and Genetic Algorithm, The 7th International Conference on Information and Communication Technology, ICoICT 2019 https://doi.org/10.1109/ICoICT.2019.8835344.
- Nadia E.M. & Ousman A. : Fuzzy TOPSIS Method in the Selection of Investment Boards by Incorporating Operational Risks ; Pro-ceedings of the World Congress on Engineering 2011 Vol I WCE 2011, July 6 - 8, 2011, London, U.K.
- Parra A., Terol A.,A.T and Rodriguez Uria M.V: A fuzzy goal programming approach to portfolio selection. European Journal of Oper-ational Reseach 133, 287-297, 2001. https://doi.org/10.1016/S0377-2217(00)00298-8.
- Buckley, J.J. : Fuzzy Hierarchical Analysis. Fuzzy Sets and Systems, 17 233 – 247 (1985) https://doi.org/10.1016/0165-0114(85)90090-9.
- Sang M.L. and Delton L.C. : Goal programming for portfolio selection. The Journal of Portfolio Management, 22-26, 1980. https://doi.org/10.3905/jpm.1980.408744.
- Sang M.L. and Lerro A.J. : Optimisation of the Portfolio selection for mutual funds. The Journal of Finance, Vol 28, 1087-1101, Dé-cembre 1973. https://doi.org/10.1111/j.1540-6261.1973.tb01443.x.
- Norbert Fogarasi, Janos Levendovszky: Sparse, mean reverting portfolio selection using simulated annealing. Algorithmic Finance, 2013, vol. 2, issue 3-4, pages 197-211 https://doi.org/10.3233/AF-13026.
- Sang M.L. and Delton L.C. : Goal programming for portfolio selection. The Journal of Portfolio Management, 22-26, 1980. https://doi.org/10.3905/jpm.1980.408744.
- Teghem J. Pirlot M. : Résolution de problèmes de Recherche Opérationnelle par les métaheuristiques. Lavoisier, 2003.
- Baesens: “Developping intelligent systems for credit scoring using machine learning techniquess “ Ph.D, Lueven, 2003 f Bar-dos: “analyse discriminante “, Dunod, 2001.
- http://www.defaultrisk.com/ f basel Committee publications:
- Khaloozadeh H and Ghoreishi S., Optimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithme, Interna-tional Journal of Business and Development Studies, Vol 10, pp 95-113, 2018.
-
Downloads
-
How to Cite
Kapiamba , J. N. ., Mubenga , P. K. ., Ulungu E.-L , B., & Mukendi , P. K. . (2024). Benchmark portfolio selection and efficient diversification of Congolese Bank. International Journal of Applied Mathematical Research, 13(1), 26-33. https://doi.org/10.14419/ka8jk962