On fixed point convergence results for class of nonexpansivemappings in hyperbolic spaces via PJ iteration process
-
2024-03-22 https://doi.org/10.14419/2wamtj79 -
Abstract
In this paper, we provide certain fixed point results for a mean nonexpansive mapping, as well as a new iterative algorithm called PJ-iteration
for approximating the fixed point of this class of mappings in the setting of hyperbolic spaces. Furthermore, we establish strong and
∆-convergence theorem for mean nonexpansive mapping in hyperbolic space. Finally, we present a numerical example to illustrate our
main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature. Our results
obtained in this paper improve, extend and unify some related results in the literature. -
References
- J. Ahmad, K. Ullah, M. Arshad and M. Sen, Approximation fixed points for mean nonexpansive mapping in Banach spaces, J. Func. Spaces, Article ID 1934274(2021), 6.
- M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Matematichki Vesnik, 67(2)(2014), 223–234.
- R.P. Agarwal, D. O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. of Nonlinear and Conv. Anal., 8(1)(2007), 61–79.
- S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP-iteration scheme in a ordered hyperbolic metric space, Nonlinear Funct. Anal. Appl., 26(5)(2021), 961-969.
- F. Akutsah and O.K. Narain, On generalized (α, β )-nonexpansive mappings in Banach spaces with applications, Nonlinear Funct. Anal. Appl., 26(4)(2021), 663-684..
- F. E. Browder, Nonexpansive nonlinear operators in a Banach space, P. Natl. A. Sci., 54(1965), 1041–1044.
- V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl., 2(2004), 97-105.
- S.S. Chang, G. Wang, L. Wang, Y.K. Tang and G.L. Ma, ∆-convergence theorems for multi-valued nonexpansive mapping in hyperbolic spaces, Appl. Math. Comput., 249(2014), 535–540.
- S. Dashputre, Padmavati and K. Sakure, Strong and ∆-convergence results for generalized nonexpansive mapping in hyperbolic space, Comm. Math. Appl., 11(3)(2020), 389-401.
- J. N. Ezeora, C. Izuchukwu, A. Mebawondu and O. Mewomo, Approximating common fixed points of mean nonexpansive mapping in hyperbolic space, Int. J. of Nonl. Ana. and Appl., 13(2)(2022), 459-471.
- J. Garc ́ıa-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375(2011), 185-195.
- D. Gohde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30(3-4)(1965), 251–258.
- N. Hussain, K. Ullah and M. Arshad, Fixed point approximation of Suzuki generalized nonexpansive mappings via new faster iteration process, J. Nonlinear Convex Anal., 19(2018), 1383–1393.
- M. Imdad and S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10(3)(2016), 131-138.
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147–150.
- S.M. Kang, S. Dashputre, B.L. Malagar and Y.C. Kwun, Fixed point approximation for asymptotically nonexpansive type mappings in uniformly convex hyperbolic spaces, J. Appl. Math., 2015 Article ID 510798, 7 pages.
- S.M. Kang, S. Dashputre, B.L. Malagar and A. Rafiq, On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces, Fixed Point Theory Appl., 2014(2014), 229.
- A.R. Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic space, Fixed Point Theory Appl., 2012(2012), 54.
- J.K. Kim and S. Dashputre, Fixed point approximation for SKC mappings in hyperbolic spaces, J. Ineq. Appl., 2015(1)(2015), 1-16.
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Fixed point approximation of generalized nonexpansive mappings in hyperbolic spaces, Inter. J. Math. Math. Sci., 2015(2015) Article Id : 368204.
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Diwan, Convergence theorems for generalized nonexpansive multivalued mapping in hyperbolic space, SpringerPlus,, 5(1)(2016), 1-16.
- W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon., 72(1965), 1004–1006.
- U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357(1)(2004), 89-128.
- L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 325(1)(2007), 386-399.
- L. Leustean, Nonexpansive iteration in uniformly convex W-hyperbolic space, J. Math. Anal. Appl., 513(2010), 193-209.
- W. R. Mann, Mean value methods in iteration, Proceedings of American Mathematical Society, 4(3)(1953), 506–510.
- K. Nakprasit, Mean nonexpansive mappings and Suzuki-generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications, 1(1)(2010), 93-96.
- M. A. Noor, New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251(1)(2000), 217–229.
- E. Picard, ́Memoire sur la th ́eorie des ́equations aux d ́eriv ́ees partielles et la m ́ethode des approximations successives, J. Math. Pures Appl., 6(1890), 145-210.
- C. Suanoom, K. Sriwichai, C. Klin-Eam and W. Khuangsatung, The generalized α-nonexpansive mappings and related convergence theorems in hyperbolic spaces, J. Inform. Math. Sci., 11(1)(2019), 1-17.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications, 340(4)(2008), 1088–1095.
- W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep., 22(1970), 142-149.
- B. S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., 275(2016), 147–155.
- Y. Yang and Y. Cui , Viscosity approximation methods for mean nonexpansive mappings in Banach spaces, Appl. Math. Sci., 2(13)(2008), 627–638.
- S. S. Zhang, About fixed point theorem for mean nonexpansive mapping in Banach spaces, J. of Sichuan University, 2(1975), 67–68.
- J. Zou, Fixed point theorem for mean nonexpansive mappings in Banach spaces, Abs. and app. anal. , 2014(2014), 6.
-
Downloads
-
How to Cite
Shrivas, J., Verma, R. K. ., & Chandraker, P. . (2024). On fixed point convergence results for class of nonexpansivemappings in hyperbolic spaces via PJ iteration process. International Journal of Applied Mathematical Research, 13(1), 12-19. https://doi.org/10.14419/2wamtj79