Convergence Analysis of Picard Thakur Hybrid Iterative Scheme for α-Nonexpansive Mappings in Uniformly Convex Banach Spaces
Convergence of Iterative Schemes in Uniformly Convex Banach Spaces.
-
2024-04-28 https://doi.org/10.14419/xtneae93 -
Banach space; Fixed Point; Generalized $\alpha$-Nonexpansive Mapping; Numerical Example; Picard-Thakur hybrid iterative scheme -
Abstract
In this study, we investigate the convergence behavior of fixed points for generalized α-nonexpansive mappings using the Picard-Thakur hybrid iterative scheme. We obtain weak and strong convergence results for generalized α-nonexpansive mappings in a uniformly convex Banach space. Numerically, we demonstrate that the Picard-Thakur hybrid iterative scheme converges more rapidly than other well-known schemes. Additionally, we present findings on data dependence and provide a numerical example to illustrate the concept. The obtained results are expanded and generalized to be consistent with relevant findings in the existing literature.
-
References
- M. Abbas, T. Nazir, Some new faster iteration process applied to constrained minimization and feasibility problems, Matematick Vesnik, Vol. 66, No.2, (2014), pp, 223–234.
- R.P. Agarwal, D.O’Regan, D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, vol.6, Springer, 2009.
- K. Aoyama, F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, Vol.74, No. 13, (2011), pp. 4387-4391.
- D. Ariza-Ruiz, C. Hernandez Linares, E. Llorens-Fuster, E. Moreno-G ´ alvez, On ´ α-nonexpansive mappings in Banach spaces, Carpathian Journal of Mathematics, (2016), pp. 13–28.
- S. Banach, Surles operations dans les ensembles abstraites et leurs applications, Fund. Math , Vol. 3, (1922), pp. 133–187.
- V. Berinde, F. Takens, Iterative approximation of fixed points, Vol. 1912, Springer, 2007.
- F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences of the United States of America, Vol. 54 No. 4, (1965), 1041.
- Y.-A, Chen,D,-J, Wen, Convergence analysis of an accelerated iteration for monotone generalized α-nonexpansive mappings with a partial order, Journal of Function Spaces, (2019).
- James A Clarkson, Uniformly convex spaces, Transactions of the American Mathemat- ical Society, Vol. 40, No. 3, (1936), pp. 396–414.
- K.Deimling, Nonlinear functional analysis, Courier Corporation, 2010.
- C. O. Imoru, M. O Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian Journal of Mathematics, (2003), pp. 155–160.
- S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society, Vol. 44, No. 1, (1974), pp. 147–150.
- J. Jia, K.Shabbir, K. Ahmad, N. Ali Shah, T. Botmart, Strong convergence of a new hybrid iterative scheme for nonexpensive mappings and applications, Journal of Function Spaces, (2022).
- S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory and Applications, (2013), no. 1, pp. 1–10.
- P. Lamba, A. Panwar, A Picard-S∗ iterative algorithm for approximating fixed points of generalized α-nonexpansive mappings, J. Math. Comput. Sci., Vol. 11m No. 3, (2021), pp. 2874–2892.
- W. R. Mann, Mean value methods in iteration, Proceedings of the American Math- ematical Society, Vol. 4, No. 3, (1953), pp. 506–510.
- G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afrika Matematika, Vol. 30, No. 5, (2019), pp. 817–835.
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for non- expansive mappings, Bulletin of the American Mathematical Society, Vol. 73, No. 4, (1967), pp. 591–597.
- R. Pant, R. Shukla, Approximating fixed points of generalized α- nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization, Vol. 38, No. 2, (2017), pp. 248–266.
- E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, Journal de Mathematiques pures ´et appliques ´ , Vol. 6, (1890), pp. 145–210.
- H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Numerical Algorithms, Vol. 81, No. 3, (2019), pp. 1129–1148.
- R. Sadhu, C. Nahak, Generalized α-nonexpansive multivalued mappings in CAT (0) space, J. Adv. Math. Stud., Vol. 12, No. 3, (2019), pp. 268-283.
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bulletin of the Australian Mathematical Society, Vol.43, No. 1, (1991), pp. 153–159.
- H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proceedings of the American Mathematical Society, Vol. 44, No. 2, (1974), pp. 375–380.
- R. Shukla, R. Pant, M. De la Sen, Generalized α-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Vol. 2017, No. 1, (2016), pp. 1–16.
- S.M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory and Applications, (2008), pp. 1–7.
- Julee Srivastava, Introduction of new Picard-S hybrid iteration with application and some results for nonexpansive mappings, Arab Journal of Mathematical Sciences, Vol. 28, No. 1, (2022), pp. 61-76, doi: 10.1108/AJMS-08-2020-0044.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications, Vol. 340, No. 2, (2008), pp. 1088–1095.
- D. Thakur, B.S. Thakur, M. Postolache, New iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, Vol. 30, (2016), pp. 2711–2720.
-
Downloads
-
How to Cite
Ahmad, K., Shabbir, K., & Nazar, N. (2024). Convergence Analysis of Picard Thakur Hybrid Iterative Scheme for α-Nonexpansive Mappings in Uniformly Convex Banach Spaces: Convergence of Iterative Schemes in Uniformly Convex Banach Spaces. International Journal of Applied Mathematical Research, 13(1), 34-48. https://doi.org/10.14419/xtneae93