Convergence Analysis of Picard Thakur Hybrid Iterative Scheme for  α-Nonexpansive Mappings in Uniformly Convex Banach Spaces

Convergence of Iterative Schemes in Uniformly Convex Banach Spaces.

  • Authors

    • Khushdil Ahmad Department of Mathematics, Government College University, Katechery Road, Lahore 54000, Pakistan
    • Khurram Shabbir Department of Mathematics, Government College University, Katchery Road 54000, Lahore
    • Nazia Nazar Department of Mathematics, Government College University, Katchery Road 54000, Lahore
    2024-04-28
    https://doi.org/10.14419/xtneae93
  • Banach space; Fixed Point; Generalized $\alpha$-Nonexpansive Mapping; Numerical Example; Picard-Thakur hybrid iterative scheme
  • Abstract

    In this study, we investigate the convergence behavior of fixed points for generalized  α-nonexpansive mappings using the Picard-Thakur hybrid iterative scheme. We obtain weak and strong convergence results for generalized  α-nonexpansive mappings in a uniformly convex Banach space. Numerically, we demonstrate that the Picard-Thakur hybrid iterative scheme converges more rapidly than other well-known schemes. Additionally, we present findings on data dependence and provide a numerical example to illustrate the concept. The obtained results are expanded and generalized to be consistent with relevant findings in the existing literature.

         
  • References

    1. M. Abbas, T. Nazir, Some new faster iteration process applied to constrained minimization and feasibility problems, Matematick Vesnik, Vol. 66, No.2, (2014), pp, 223–234.
    2. R.P. Agarwal, D.O’Regan, D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, vol.6, Springer, 2009.
    3. K. Aoyama, F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, Vol.74, No. 13, (2011), pp. 4387-4391.
    4. D. Ariza-Ruiz, C. Hernandez Linares, E. Llorens-Fuster, E. Moreno-G ´ alvez, On ´ α-nonexpansive mappings in Banach spaces, Carpathian Journal of Mathematics, (2016), pp. 13–28.
    5. S. Banach, Surles operations dans les ensembles abstraites et leurs applications, Fund. Math , Vol. 3, (1922), pp. 133–187.
    6. V. Berinde, F. Takens, Iterative approximation of fixed points, Vol. 1912, Springer, 2007.
    7. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences of the United States of America, Vol. 54 No. 4, (1965), 1041.
    8. Y.-A, Chen,D,-J, Wen, Convergence analysis of an accelerated iteration for monotone generalized α-nonexpansive mappings with a partial order, Journal of Function Spaces, (2019).
    9. James A Clarkson, Uniformly convex spaces, Transactions of the American Mathemat- ical Society, Vol. 40, No. 3, (1936), pp. 396–414.
    10. K.Deimling, Nonlinear functional analysis, Courier Corporation, 2010.
    11. C. O. Imoru, M. O Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian Journal of Mathematics, (2003), pp. 155–160.
    12. S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society, Vol. 44, No. 1, (1974), pp. 147–150.
    13. J. Jia, K.Shabbir, K. Ahmad, N. Ali Shah, T. Botmart, Strong convergence of a new hybrid iterative scheme for nonexpensive mappings and applications, Journal of Function Spaces, (2022).
    14. S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory and Applications, (2013), no. 1, pp. 1–10.
    15. P. Lamba, A. Panwar, A Picard-S∗ iterative algorithm for approximating fixed points of generalized α-nonexpansive mappings, J. Math. Comput. Sci., Vol. 11m No. 3, (2021), pp. 2874–2892.
    16. W. R. Mann, Mean value methods in iteration, Proceedings of the American Math- ematical Society, Vol. 4, No. 3, (1953), pp. 506–510.
    17. G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afrika Matematika, Vol. 30, No. 5, (2019), pp. 817–835.
    18. Zdzisław Opial, Weak convergence of the sequence of successive approximations for non- expansive mappings, Bulletin of the American Mathematical Society, Vol. 73, No. 4, (1967), pp. 591–597.
    19. R. Pant, R. Shukla, Approximating fixed points of generalized α- nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization, Vol. 38, No. 2, (2017), pp. 248–266.
    20. E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, Journal de Mathematiques pures ´et appliques ´ , Vol. 6, (1890), pp. 145–210.
    21. H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Numerical Algorithms, Vol. 81, No. 3, (2019), pp. 1129–1148.
    22. R. Sadhu, C. Nahak, Generalized α-nonexpansive multivalued mappings in CAT (0) space, J. Adv. Math. Stud., Vol. 12, No. 3, (2019), pp. 268-283.
    23. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bulletin of the Australian Mathematical Society, Vol.43, No. 1, (1991), pp. 153–159.
    24. H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proceedings of the American Mathematical Society, Vol. 44, No. 2, (1974), pp. 375–380.
    25. R. Shukla, R. Pant, M. De la Sen, Generalized α-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Vol. 2017, No. 1, (2016), pp. 1–16.
    26. S.M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory and Applications, (2008), pp. 1–7.
    27. Julee Srivastava, Introduction of new Picard-S hybrid iteration with application and some results for nonexpansive mappings, Arab Journal of Mathematical Sciences, Vol. 28, No. 1, (2022), pp. 61-76, doi: 10.1108/AJMS-08-2020-0044.
    28. T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathematical Analysis and Applications, Vol. 340, No. 2, (2008), pp. 1088–1095.
    29. D. Thakur, B.S. Thakur, M. Postolache, New iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, Vol. 30, (2016), pp. 2711–2720.
  • Downloads

  • How to Cite

    Ahmad, K., Shabbir, K., & Nazar, N. (2024). Convergence Analysis of Picard Thakur Hybrid Iterative Scheme for  α-Nonexpansive Mappings in Uniformly Convex Banach Spaces: Convergence of Iterative Schemes in Uniformly Convex Banach Spaces. International Journal of Applied Mathematical Research, 13(1), 34-48. https://doi.org/10.14419/xtneae93