Solving viscid Burgers equation by Adomian decomposition Method (ADM), Regular Pertubation Method (RPM) and Homotopy Perturbation Method (HPM)

  • Authors

    • Moussa BAGAYOGO Université Joseph KI-ZERBO
    • Youssouf MINOUNGOU Ecole normale supérieure
    • NEBIE Abdoul Wassiha Université Joseph KI-ZERBO
    • Youssouf PARE Université Joseph Ki-Zerbo
    2024-07-21
    https://doi.org/10.14419/gxb78b77
  • Adomian decomposition Method (ADM), Burgers equation, Homotopy Perturbation Method (HPM), Regular Pertubation Method RPM).
  • Abstract

    In this paper the Adomian decomposition Method (ADM), Regular Pertubation Method (RPM) and the Homotopy Perturbation Method (HPM) are used to study Burgers equation. Then we compare the solutions obtained by these three methods.

  • References

    1. K.ABBAOUI, Les fondements de la méthode décompositionnelle d’Adomian et application a` la résolution de problèmes issus de la biologie et de la médécine. Thèse de doctorat de l’Université Paris VI. Octobre 1995
    2. Joseph Bonazebi Yindoula, Pare Youssouf, Gabriel Bissanga, Francis Bassono,Blaise Some, Application of the Adomian decomposition method and Laplace transform method to solving the convection diffusion-dissipation equation, International Journal of Applied Mathematical Research, Vol.3,
    3. K. ABBAOUI and Y. CHERRUAULT, Convergence of Adomian method applied to non linear equations. Math. Comput. Modelling Vol.20, No.9, (1994), pp.60-73.
    4. K. ABBAOUI and Y. CHERRUAULT, The Decomposition method applied to the Cauchy problem. Kybernetes, Vol.28, No.1, (1999), pp.68-74.
    5. N. NGARHASTA, B. SOME, K.ABBAOUI and Y. CHERRUAULT, New numerical study of Adomian method applied to a diffusion model. Ky-bernetes, Vol.31, No.1, (2002), pp.61-75
    6. He J.H. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178 : 257-262(1999).
    7. He J.H. Homotopy perturbation method : a new nonlinear analytical technique Applied Mathematics and Computation,135 : 73–79 (2003)
    8. He J.-H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied Mathematics and Computation, vol.151, No.1, (2004), pp.287–292
    9. E.M. DE JAGER and JIANG FU RU, The theory of singular perturbations. North-Holland series in Applied Mathematics and Mechanics,Vol.42, 1996
    10. Iyakino P. Akpan, Adomian Decomposition Approach to the Solution of the Burger’s Equation. American Journal of Computational Mathematics, Vol.5, No.3, (2015), pp.329-335
    11. J. Biazar, H. Ghazvini, Exact Solutions for Nonlinear Burgers’ Equation by Homotopy Perturbation Method. Wiley InterScience, Vol.25, No.4, (2009), pp.833-842
    12. Turbulence, https://en.wikipedia.org/wiki/Turbulence
    13. M. Al-Mazmumy,H. Al-Malki, The Modified Adomian Decomposition Method for Solving Nonlinear Coupled Burger’s Equations. Nonlinear Analysis and Differential Equations, Vol.3, No.3, (2015), pp.111-122
    14. Christos Mamaloukas and Stefanos Spartalis, Decomposition method in comparison with numerical solutions of Burgers equation. Ratio mathematica, 18 (2008), 51-61
    15. AVAZ NAGHIPOUR, JALIL MANAFIAN, Application of the Laplace Adomian decompostion and implicit methods for solving Burgers’ equa-tion TWMS Journal of Pure and Applied Mathematics, Vol.6, No.1, (2015), pp.68-77
    16. Moussa BAGAYOGO ,Youssouf PARE, Youssouf MINOUNGOU, An Approached Solution of Wave Equation with Cubic Damping by Ho-motopy Perturbation Method (HPM), Regular Pertubation Method(RPM) and Adomian Decomposition Method (ADM), Journal of Mathemat-ics Research; Vol.10, No.2, (2018), pp.166-181
  • Downloads

  • How to Cite

    BAGAYOGO, M., MINOUNGOU, Y., NEBIE Abdoul Wassiha, & PARE, Y. (2024). Solving viscid Burgers equation by Adomian decomposition Method (ADM), Regular Pertubation Method (RPM) and Homotopy Perturbation Method (HPM). International Journal of Applied Mathematical Research, 13(2), 54-68. https://doi.org/10.14419/gxb78b77