Advanced Transform Techniques for the One-Dimensional Non-Homogeneous Heat Equation with Non-Homogeneous BCs and IC
-
2024-09-22 https://doi.org/10.14419/kyyb9f56 -
Heat Equation, Boundary Conditions, Fourier Series, Non-Homogeneous PDE, Transformation Method. -
Abstract
This study addresses the one-dimensional non-homogeneous heat equation with non-homogeneous boundary conditions using a transformation method. We introduce a new dependent variable V(x,t) and a function ψ(x) to simplify the PDE into a homogeneous form, solving it analytically. The solution involves separating variables and applying Fourier series, leading to:
Numerical simulations confirm the theoretical results, illustrating the method’s robustness for modeling heat conduction problems.
-
References
- Agarwal, R. P., & O'Regan, M. (2009). Generalized Integral Transformations. Springer.
- Berger, M. J., & Colella, J. O. (1989). Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82(1), 64–84
- Çengel, Y. A. (2018). Heat Transfer: A Practical Approach. McGraw-Hill Education.
- Chung, T. J. (2002). Computational Fluid Dynamics. Cambridge University Press.
- d'Alembert, J. le Rond. (1747). Réflexions sur la cause générale des vents. Histoire de l'Académie Royale des Sciences.
- Duffy, D. G. (2015). Boundary Value Problems and Partial Differential Equations. Springer.
- Fourier, J. B. J. (1822). Théorie analytique de la chaleur. Firmin Didot.
- Ghosh, S., & Khanna, A. (2012). Mathematical Methods for Engineers and Scientists. Springer.
- Incropera, F. P., & DeWitt, D. P. (2002). Introduction to Heat Transfer. Wiley.
- Laplace, P. S. (1799). Mémoire sur la théorie des probabilités. Bachelier.
- Moin, P. (2010). Fundamentals of Computational Fluid Dynamics. Cambridge University Press.
- MIT OpenCourseWare. (2023). Linear Partial Differential Equations. Massachusetts Institute of Technology.
- Smith, B. A., Abel, T. W., & Howe, D. A. T. (2018). High-Performance Computing: An Introduction. CRC Press.
- Strauss, W. A. (2007). Partial Differential Equations: An Introduction. John Wiley & Sons.
- Wazwaz, A. M. (2011). Nonlinear Partial Differential Equations and Applications. Springer.
- Yagdjian, K. B. (2016). Integral Transforms and Special Functions. Springer.
- Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The Finite Element Method: Its Basis and Fundamentals. Elsevier.
-
Downloads
-
How to Cite
FIFELOLA, R. O., OKAFOR UCHENWA LINUS, ADEDAPO KEHINDE FEMI, & JOHNSON SUNDAY EGBEJA. (2024). Advanced Transform Techniques for the One-Dimensional Non-Homogeneous Heat Equation with Non-Homogeneous BCs and IC. International Journal of Applied Mathematical Research, 13(2), 96-102. https://doi.org/10.14419/kyyb9f56