Inference for generalized exponential distribution based on generalized order statistics

  • Authors

    • Eldesoky Afify AL Qassim
    2015-05-17
    https://doi.org/10.14419/ijamr.v4i2.3852
  • Generalized Exponential Distribution, Maximum Likelihood, Bayes Estimation, Record Values, Survival Function, and Hazard Rate Function.
  • Abstract

    Estimation of a parameter of generalized exponential distribution (gexp) is obtained based on generalized order statistics. The maximum likelihood and Bayes methods are used for this purpose. Survival function and hazard rate are also computed. Estimation based on upper record values from generalized exponential distribution is obtained as a special case and compared by simulated data.

  • References

    1. [1] Kamps, U. (1995 a), A concept of generalized order statistics. B. G. Teubner, Stuttgart. http://dx.doi.org/10.1007/978-3-663-09196-7.

      [2] Ahsanullah, M. (1997), Generalized order statistics from power function distribution. J. of Appl. Statist. Sci., 5, 283-290.

      [3] Ahsanullah, M. (2000), Generalized order statistics from exponential distribution. J. of Statist. Plann. And Inference, 79, 79-91. http://dx.doi.org/10.1016/s0378-3758(99)00068-3.

      [4] Saran, J. and Pushkarna, N. (2000), Relationships for moments of order statistics from a generalized exponential distribution. Statistica, LX, No. 3, 585-595.

      [5] Malinowska, I., Pawlas, P. and Szynal, D. (2006), Estimation of location and scale parameters for the Burr XII distribution using generalized order statistics. Linear Algebra and its Applications, 416, 150-162. http://dx.doi.org/10.1016/j.laa.2006.02.007.

      [6] Al Omari,M. A., Hadeel, S. A. and Noor, A. I. (2010), Comparison of the Bayesian and maximum likelihood estimation for Weibull distribution. J. of Mathematics and Statistics, 6, 2, 100-104. http://dx.doi.org/10.3844/jmssp.2010.100.104.

      [7] Abu El Fotouh,S. and Nassar, M. M.A.(2011). Estimation for parameters of the Weibull Extension model based on generalized order statistics. Int. J. Contemp. Math. Sciences, Vol. 6, no. 36, 1749-1760.

      [8] Naser Odat (2010). Estimation of reliability based on Pareto distribution. Appl. Math. Sci. Val. 4, No. 55, 2743-2748.

      [9] Aljouharah, A. (2013). Estimating the parameters of an exponentiated inverted Weibull distribution under type-II censoring. Appl. Math. Sci., vol. 7, No. 35, 1721-1736.

      [10] Attia, A. F., Shaban, A. S. and Abd El Sattar, M. H. (2013). Estimation in constant –stress accelerated life testing for birnbanum-saunders dietribution under censoring. Int. J. Contemp. Math. Sciences, Vol. 8, No.4, 173-188.

      [11] Muhammad, Y. D. and Muhammad, A. (2013), Bayesian analysis of randomly censored generalized exponential distribution. Austrian J. of Statistics, Vol. 42, No. 1 47-62.

      [12] Kamps, U. (1995 b), A concept of generalized order statistics. J. of Statist. Plann. And Inference, 48, 1-23. http://dx.doi.org/10.1016/0378-3758(94)00147-N.

      [13] Mazen, Z. and Ammar, M. S. (2009), Parameters estimation of the modified Weibull distribution. Appl. Math. Sci., vol. 2, 11, 541-550.

      [14] Singh, V. P. and Guo, H. (1995), Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy

      [15] (POME). Hydrol. J. Sci., 40, 2, 165-181. http://dx.doi.org/10.1080/02626669509491402.

  • Downloads

    Additional Files

  • How to Cite

    Afify, E. (2015). Inference for generalized exponential distribution based on generalized order statistics. International Journal of Applied Mathematical Research, 4(2), 370-375. https://doi.org/10.14419/ijamr.v4i2.3852

    Received date: 2014-11-14

    Accepted date: 2014-12-08

    Published date: 2015-05-17