# A new difference scheme for fractional cable equation and stability analysis

## DOI:

https://doi.org/10.14419/ijamr.v4i1.3875## Published:

2015-01-05## Keywords:

Cable equation, Caputo fractional derivative, Difference scheme, Stability.## Abstract

We consider the fractional cable equation. For solution of fractional Cable equation involving Caputo fractional derivative, a new difference scheme is constructed based on Crank Nicholson difference scheme. We prove that the proposed method is unconditionally stable by using spectral stability technique.

## References

[1] Xikui Li, Xianhong Han, Xuanping Wang, â€Numerical modeling of viscoelastic flows using equal low-order finite elementsâ€, *Comput. Methods Appl. Mech. Engrg.*, Vol.199, (2010), pp.570-581.

[2] M. Raberto, E. Scalas, F. Mainardi, â€Waiting-times returns in high frequency financial data: an empirical studyâ€,*Physica A*, Vol.314, (2002), pp.749-755.

[3] D.A. Benson, S. Wheatcraft, M.M. Meerschaert,â€Application of a fractional advectionâ€“dispersion equationâ€, *Water Resour. Res.*, Vol.36, (2000), pp.1403â€“1412.

[4] X. Li, M. Xu, X. Jiang,â€Homotopy perturbation method to time-fractional diffusion equation with a moving boundaryâ€, *Appl. Math. Comput. *, Vol. 208, (2009), pp.434â€“439.

[5] J. A. T. Machado, â€Discrete-time fractional-order controllersâ€, *Fractional Calculus Applied Analysis*,Vol.4, No.1,(2001),pp.47â€“66.

[6] Z. Deng, V.P. Singh, L. Bengtsson,â€ Numerical solution of fractional advection-dispersion equationâ€, *J. Hydraulic Eng, *Vol.130, (2004), pp. 422â€“431.

[7] V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, H.R. Hicks,â€ Numerical methods for the solution of partial differential equations of fractional orderâ€, *J. Comput. Phys. *, Vol. 192, (2003), pp. 406â€“421.

[8] I. Podlubny, Fractional Differential Equations, *Academic Press, New York*, (1999).

[9] Chang-Ming Chen , F. Liu , I. Turner b, V. Anh,â€ A Fourier method for the fractional diffusion equation describing sub-diffusionâ€, *Journal of Computational Physics*, Vol. 227, (2007), pp. 886-897.

[10] Ibrahim Karatay, Serife Rabia BayramoÄŸlu,â€ An Efficient Difference Scheme for Time Fractional Advection Dispersion Equationsâ€,*Applied Mathematical Sciences *, Vol. 6, No. 98, (2012), pp. 4869 - 4878.

[11] Zafer Cakir, â€Stability of Difference Schemes for Fractional Parabolic PDE with the Dirichlet-Neumann Conditionsâ€, *Abstract and Applied Analysis*, Volume 2012, Article ID 463746, 17 pages

[12] Ibrahim KARATAY, Nurdane KALE, Serife Rabia BAYRAMOÄžLU,â€ A new difference scheme for time fractional heat equations based on the Crank-Nicholson methodâ€, Volume 16, Issue 4,(2013), pp 892-910.

[13] A. Ashyralyev and Z. Cakir,â€ On the numerical solution of fractional parabolic partial differential equations with the Dirichlet conditionâ€,*In Proceedings of the 2nd International Symposium on Computing in Science and Engineering (ISCSE '11) *, (2011), pp. 529-530.