A new difference scheme for fractional cable equation and stability analysis

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    We consider the fractional cable equation. For solution of fractional Cable equation involving Caputo fractional derivative, a new difference scheme is constructed based on Crank Nicholson difference scheme. We prove that the proposed method is unconditionally stable by using spectral stability technique.

  • Keywords

    Cable equation; Caputo fractional derivative; Difference scheme; Stability.

  • References

      [1] Xikui Li, Xianhong Han, Xuanping Wang, ”Numerical modeling of viscoelastic flows using equal low-order finite elements”, Comput. Methods Appl. Mech. Engrg., Vol.199, (2010), pp.570-581.

      [2] M. Raberto, E. Scalas, F. Mainardi, ”Waiting-times returns in high frequency financial data: an empirical study”,Physica A, Vol.314, (2002), pp.749-755.

      [3] D.A. Benson, S. Wheatcraft, M.M. Meerschaert,”Application of a fractional advection–dispersion equation”, Water Resour. Res., Vol.36, (2000), pp.1403–1412.

      [4] X. Li, M. Xu, X. Jiang,”Homotopy perturbation method to time-fractional diffusion equation with a moving boundary”, Appl. Math. Comput. , Vol. 208, (2009), pp.434–439.

      [5] J. A. T. Machado, ”Discrete-time fractional-order controllers”, Fractional Calculus Applied Analysis,Vol.4, No.1,(2001),pp.47–66.

      [6] Z. Deng, V.P. Singh, L. Bengtsson,” Numerical solution of fractional advection-dispersion equation”, J. Hydraulic Eng, Vol.130, (2004), pp. 422–431.

      [7] V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, H.R. Hicks,” Numerical methods for the solution of partial differential equations of fractional order”, J. Comput. Phys. , Vol. 192, (2003), pp. 406–421.

      [8] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).

      [9] Chang-Ming Chen , F. Liu , I. Turner b, V. Anh,” A Fourier method for the fractional diffusion equation describing sub-diffusion”, Journal of Computational Physics, Vol. 227, (2007), pp. 886-897.

      [10] Ibrahim Karatay, Serife Rabia Bayramoğlu,” An Efficient Difference Scheme for Time Fractional Advection Dispersion Equations”,Applied Mathematical Sciences , Vol. 6, No. 98, (2012), pp. 4869 - 4878.

      [11] Zafer Cakir, ”Stability of Difference Schemes for Fractional Parabolic PDE with the Dirichlet-Neumann Conditions”, Abstract and Applied Analysis, Volume 2012, Article ID 463746, 17 pages

      [12] Ibrahim KARATAY, Nurdane KALE, Serife Rabia BAYRAMOĞLU,” A new difference scheme for time fractional heat equations based on the Crank-Nicholson method”, Volume 16, Issue 4,(2013), pp 892-910.

      [13] A. Ashyralyev and Z. Cakir,” On the numerical solution of fractional parabolic partial differential equations with the Dirichlet condition”,In Proceedings of the 2nd International Symposium on Computing in Science and Engineering (ISCSE '11) , (2011), pp. 529-530.




Article ID: 3875
DOI: 10.14419/ijamr.v4i1.3875

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.