Some convergence and stability results for two new Kirk and Jungck-multi step type iterative processes
-
2015-01-20 https://doi.org/10.14419/ijamr.v4i1.3892 -
Fixed point, Jungck type iterative process, Kirk-multistep iteration, Metric spaces, Stability of iterative processes. -
Abstract
In this work two new iterative processes called the “Jungck-Kirk generalized multi-step†and “Jungck-Kirk multi-step†are introduced and some convergence and stability results are proved for these iterative process. The results include results of almost stability and summable almost stability. Since these new iterative processes are more general than other ones extant in literature, some results of this work partially generalize results already proved in the existing literature.
-
References
[1] V. Berinde, “Summable almost stability of fixed point iteration proceduresâ€, Carpathian J. Math., 19 (2003) 81-88.
[2] A. O. Bosede, B. E. Rhoades, “Stability of Picard and Mann iteration for a general class of functionsâ€, J. Adv. Math. Studies, 3 (2) (2010) 23-25.
[3] R. Chugh, V. Kumar, “Stability of hybrid fixed point iterative algorithms of Kirk-Noor type in normed linear space for self and nonself operatorsâ€, Int. J. Contemp. Math. Sciences, 7 (24) (2012), 1165-1184.
[4] F. Gursoy, V. Karakaya, B. E. Rhoades, “Some convergence and stability results for the Kirk multistep and Kirk-SP fixed point iterative algorithmsâ€, Abstract and Applied Analysis (2014) 1-12.
[5] F. Gursoy, V. Karakaya, “Some convergence and stability results for two new Kirk type hybrid fixed point iterative algorithmsâ€, Journal of Function Spaces (2014) 1-8.
[6] A. M. Harder, T. L. Hicks, “Stability results for fixed point iteration proceduresâ€, Math. Jap. 33, (5) (1988) 693-706.
[7] O. Imoru, M. O. Olatinwo, “On the stability of Picard and Mann iteration processesâ€, Carpathian J. Math. 19 (2) (2003) 155-160.
[8] C.O. Imoru, M. O. Olatinwo, “Some stability theorems for some iteration processesâ€, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 45 (2006) 81-88.
[9] S. Ishikawa, “Fixed points by a new iteration method “, Proc. Amer Math. Soc., 44 (1) (1974), 147-150.
[10] W. A. Kirk, “On successive approximations for nonexpansive mappings in Banach spacesâ€, Glasgow Mathematical Journal, 12 (1971) 6-9.
[11] W. R. Mann, “Mean value methods in iterationâ€, Proc., Amer. Math. Soc., 44 (1953), 506-510.
[12] M.A. Noor, “New approximation schemes for general variational inequalitiesâ€, J. Math. Anal. Appl., 251 (2000), 217-229.
[13] J.O. Olaleru, H. Akewe, “The convergence of Jungck-type iterative schemes for generalized contractive-like operatorsâ€, Fasc. Math., 45 (2010) 87-98.
[14] M.O. Olatinwo, “A generalization of some convergence results using the Jungck-Noor three-step iteration process in arbitrary Banach spaceâ€, Fasc. Math., 40 (2008) 37-43.
[15] M. O. Olatinwo, “On some stability results for fixed point iteration proceduresâ€, Journal of Mathematics and statistics 2 (1) (2006) 339-342.
[16] M. O. Olatinwo, “Some stability results for nonexpansive and quasi-nonexpansive operators in uniformly convex Banach space using two new iterative processes of Kirk-typeâ€, Fasc. Math., 43 (2010) 101-114.
[17] M. O. Olatinwo, “Some stability results for two hybrid fixed point iterative algorithms in normed linear spaceâ€, Math. Vesnik, 61 (4) (2009) 247-256.
[18] M. O. Olatinwo, “Some stability results in complete metric spaceâ€, Acta Univ. Palacki. Olomuc., Fac. rer. nat. Mathematica, 48 (2009) 83-92.
[19] M. O. Osilike, “Some stability results for fixed point iteration proceduresâ€, J. Nigerian Math. Soc., 14/15 (1995) 17-29.
[20] M. O. Osilike, “Stability of the Mann and Ishikawa iteration procedures for $phi$-strong pseudocontractions and nonlinear equations of the $phi$-strongly accretive typeâ€, J. Math. Anal. Appl. 227 (2) (1998) 319-334.
[21] A. M. Ostrowski, “The round-off stability of iterationsâ€, Z. Angew. Math. Mech., 47 (1967) 77-81.
[22] B. E. Rhoades, S. M. Soltuz, “The equivalence between Mann-Ishikawa iteration and multistep iterationâ€, Nonlinear Anal., 58 (2004) 219-228.
[23] S. L. Singh, C. Bhatnagar and S. N. Mishra, “Stability of Jungck-Type iterative proceduresâ€, International Journal of Mathematics and Mathematical Sciences, 19 (2005) 3035-3043.
[24] T. Zamfirescu, “Fix point in metric spacesâ€, Archiv der Mathematik, 23 (1)(1972) 292-298.
-
Downloads
-
How to Cite
RamÃrez Juárez, M., & Bezanilla López, A. (2015). Some convergence and stability results for two new Kirk and Jungck-multi step type iterative processes. International Journal of Applied Mathematical Research, 4(1), 90-98. https://doi.org/10.14419/ijamr.v4i1.3892Received date: 2014-11-18
Accepted date: 2014-12-15
Published date: 2015-01-20