Rarefaction effects on the flow characteristics in microchannels on asymmetric wall thermal condition

  • Authors

    • Md. Tajul Islam Departmetnt of Mathematics, Begum Rokeya University, Rangpur, Bangladesh.
    2015-01-27
    https://doi.org/10.14419/ijamr.v4i1.3967
  • Compressible, Incompressible, Knudsen Number, Reynolds Number, Slip Flow.
  • Abstract

    Rarefaction effects on the flow characteristics in 2D microchannels on asymmetric wall thermal conditions are investigated by control volume technique. In order to examine the influence of Knudsen numbers on the flow characteristics, a series of simulations for both compressible and incompressible flow with different Reynolds and Knudsen numbers are performed. Nitrogen gas is used as working fluid and the slip boundary conditions are used on the walls. The Navier-Stokes and energy equations are solved simultaneously. The results are found in good agreement with those predicted by analytical solutions in 2D continuous flow model employing first order slip boundary conditions. It is shown here that the Knudsen number has effects on velocity and temperature distribution for both the compressible and incompressible flows. It causes the velocity slip on the wall and causes the temperature difference between the wall temperature and the gas temperature on the wall.

  • References

    1. [1] A. Beskok, G. E. Karniadakis, Simulation of Heat and Momentum Transfer in Complex Microgeometries, Journal of Thermophysics and Heat Transfer 8 (1994) 647-655.http://dx.doi.org/10.2514/3.594.

      [2] J. L. M. Poiseuille, Experimental investigations upon the flow of liquids in tubes of very small diameter, Lancaster Press Inc., Lancaster, 1846.

      [3] E. B. Arkilic, K. S. Bueuer, M. A. Schmidt, Gaseous Slip Flow in Long Microchannles, Application of Microfabrication to Fluid Mechanics, ASME 197 (1994) 57-65.

      [4] Gad-el-Hak M., The fluid mechanics of microdevices – The Freeman Scholar Lecture, J. Fluids Eng. 121 (1999) 5–33.http://dx.doi.org/10.1115/1.2822013.

      [5] Hadjiconstantinou N.G., The limits of Navier Stokes theory and kinetic extensions for describing small scale gaseous hydrodynamics, Phys. Fluids 18 (2006) 1070-6631.http://dx.doi.org/10.1063/1.2393436.

      [6] H. Sun, M. Faghri, Effects of Rarefaction and Compressibility of Gaseous Flow in Microchannel using DSMC, Numerical Heat Transfer, Part a 38 (2000) 153-168.http://dx.doi.org/10.1002/(SICI)1099-0518(20000515)38:10<1852::AID-POLA720>3.0.CO;2-J.

      [7] H. van den Berg, C. Seldam, P. Gulik, Compressible Laminar flow in a capillary, J. Fluid mech. 246 (1993) 1-20.http://dx.doi.org/10.1017/S0022112093000011.

      [8] I. A. Graur, J. G. Meolans, D. E. Zeitoun, Analytical and numerical descriotion for isothermal gas flows in microchannels 2 (2006) 64-77.

      [9] J. C. Harley, Y. Huang, H. H. Bau, J. N. Zemel, Gas flow in micro-channels, J. Fluid Mech. 284 (1995) 251-274.http://dx.doi.org/10.1017/S0022112095000358.

      [10] Karniadakis G., Beskok A., Aluru N., Microflows and Nanoflows, Fundamentals and Simulation, Springer, New York, 2005.

      [11] Knudsen M., Die gesetze der molekularstrmung und der innerenreibungsstrmung der gasedurchrhren, Annalen der Physik 28 (1909) 75-130.http://dx.doi.org/10.1002/andp.19093330106.

      [12] Maxwell, J.C., On Stresses in Rarified Gases Arising From Inequalities of Temperature, Philos. Trans. R. Soc. London 170 (1879) 231-256.http://dx.doi.org/10.1098/rstl.1879.0067.

      [13] M. Gad-el-Hak, the MEMS Handbook (2nd edition), CRC press, New York, 2006.

      [14] Orhan A., Mete A., Analysis of laminar heat transfer in micro-Poiseille flow, International Journal of Thermal Sciences 46 (2007) 30-37.http://dx.doi.org/10.1016/j.ijthermalsci.2006.04.003.

      [15] Pong K. C., Ho C. M., Liu J., Tai Y. C., Non-linear Pressure Distribution in Uniform Microchannels, Application of Microfabrication to Fluid Mechanics, ASME 197 (1994) 51-56.

      [16] R. Prud'homme, T. Chapman, J. Bowen, Laminar Compressible Flow in a Tube, Appl. Sci. Res. 43 (1986) 67-74.http://dx.doi.org/10.1007/BF00385729.

      [17] Schaaf, S., Chambre, P., Flow of Rarefied Gases, Princeton University Press, Princeton, 1961.

      [18] Smoluchowski, M., Über den TemperatursprungbeiWärmeleitung in Gasen.,Akad. Wiss. Wien. CVII (1898) 304-329.

  • Downloads

  • How to Cite

    Islam, M. T. (2015). Rarefaction effects on the flow characteristics in microchannels on asymmetric wall thermal condition. International Journal of Applied Mathematical Research, 4(1), 119-128. https://doi.org/10.14419/ijamr.v4i1.3967

    Received date: 2014-12-02

    Accepted date: 2014-12-29

    Published date: 2015-01-27