Application of the genetic algorithms to the identification of the hydrodynamic parameters


  • Sawadogo Wenddabo Olivier University of Ouagadougou
  • Alaa Noureddine University of Cadi Ayyad
  • Somé Kounhinir University of Ouagadougou
  • Somé Blaise University of Ouagadougou





Code coupling, Finite elements, Genetic algorithm, Hydrodynamic parameters, Inverse problem.


In this work, we propose an adaptation of the algorithm Non-dominated Sorting Genetic Algorithm-II (NSGA-II) proposed by deb. et al. (2002) to solve multi-objective problems to the resolution of mono-objective problem.

Contrary to the majority of the genetic algorithms, we did not define a probability of crossing.

After having applied our algorithm to functions test, we then used it to identify hydrogeologic parameters where the boundaries values and the source term are supposed to be unknown besides the permeability.

The direct problem was solved by using the finite elements of Galerkin on freefem++ and the genetic algorithm  was programmed in Matlab. Then we carried out a coupling of the two codes to identify the parameters.


[1] Adrian Dan,Patrick Goblet Programme TRANSPOL II (INERIS 2003), Rapport final Mai 2004.

[2] J.H Holland,Adaptation in Natural and Artificial Systems ,University of Michigan press, 1975.

[3] F. Hetch, O. Pironneau FreeFem++,

[4] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated annealing: Theory and Applications,Kluwer Academic Publishers, 1987. ISBN: 90-277-2513-6.

[5] Anatoly A. Zhigljavsky , Theory of Global Random Search ,Kluwer Academic Plubishers, 1991.

[6] R. Cerf , Une Théorie Asymptotique des Algorithmes Génétiques ,PhD thesis, Université Montpellier II (France), 1994.

[7] D.E Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning, Reading MA Addison Wesley, 1989.

[8] D.E Goldberg, Real-coded genetic algorithms, virtual alphabets and blocking , Complex Systems, 5:139–167, 1991.

[9] Latifa Oulladji -Ales Janka -Jean Antoine Désidéri -Alain Dervieux, Optimisation aérodynamique par algorithmes génétiques hybrides: application à la réduction d’un critère de bang sonique, Rapport de recherche INRIA No 4884,Juillet 2003.

[10] Nicolas Durand, Nicolas Alech, Jean-Marc Alliot, and Marc Schoenauer , Genetic algorithms for optimal air traffic conflict resolution, In Proceedings of the Second Singapore Conference on Intelligent Systems. SPICIS, 1994.

[11] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan, A Fast Elitist Multiobjective Genetic Algorithm:

NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002), no. 2, 182 - 197.

[12] Owe Axelsson, Vincent A. Barker, Finite element solution of boundary value problems: theory and computation, Society for Industrial and Applied Mathematics, 2001.

[13] E. Ledoux, Modèles mathématiques en hydrogéologie, Centre d’Informatique Géologique Ecole Nationale Supérieure des Mines de Paris, 2003.

[14] G. de Marsily, Cours d’hydrogéologie ,Université Paris VI, Septembre 2004 .

[15] Guillaume CARLIER , ANALYSE FONCTIONNELLE,Notes de cours ENS, 2009-2010.

[16] Philippe G. Ciarlet , The Finite Element Method for Elliptic Problems, North-Holland,1980.

[17] Owe Axelsson, Vincent A. Barker , Finite element solution of boundary value problems: theory and computation , Society for Industrial and Applied Mathematics, 2001.

[18] Alexandre Ern, Jean-Luc Guermond , Eléments finis : théorie, applications, mise en oeuvre, Numéro 36 dans Mathématiques et Applications. Springer, 2002.

[19] D.E. Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning, Reading MA Addison Wesley, 1989.

[20] D. Ortiz-Boyer and C. Hervés-Martinez and N. Garcia, A crossover operator for evolutionary algorithms based on population features, Journal of Artifical Intelligence Research, 2005.

[21] P. G. Ciarlet , Introduction à l’Analyse Numérique Matricielle et à l’Optimisation, Masson, Paris, 1982.

View Full Article: