Mean-median compromise method as an innovating voting rule in social choice theory
-
2015-02-20 https://doi.org/10.14419/ijamr.v4i1.4139 -
Aggregation, Approval Voting, Borda Majority Count, Majority Judgment, Social Choice Function. -
Abstract
This paper aims at presenting a new voting function which is obtained in Balinski-Laraki's framework and benefits mean and median advantages. The so-called Mean-Median Comprise Method (MMCM) has fulfilled criteria such as unanimity, neutrality, anonymity, monotonicity, and Arrow's independence of irrelevant alternatives. It also generalizes approval voting system.
-
References
[1] Nicolas Jean. Environnement politique et élections : Une étude des déterminants du vote appliquée aux élections municipales françaises. PhD thesis, Université des Sciences et Technologies de Lille, 2012.
[2] Kenneth J. Arrow. Social choice and individual values, Yale University Press, 1951.
[3] Kenneth J. Arrow. Social choice and individual values, Yale University Press, 1963.
[4] Michel Balinski and Rida Laraki. A theory of measuring, electing and ranking. Proceedings of the National Academy of Sciences of the United States of America, pages 8720-8725, 2007.
[5] Michel Balinski and Rida Laraki. Majority Judgment: measuring, ranking and electing. MIT Press, 2010.
[6] Michel Balinski and Rida Laraki. Jugement majoritaire vs vote majoritaire. Cahier 2012-37, CNRS, 2012.
[7] José Carlos R. Alcantud and Annick Laruelle. Dis& approval voting: a characterization. Social Choice and Welfare, 43(1):1-10, 2014. http://dx.doi.org/10.1007/s00355-013-0766-7.
[8] Manzoor Ahmed Zahid. A new framework for elections. PhD thesis, Tilburg University, 2012.
[9] Ruffin-Benoît M. Ngoie, Zoïnabo Savadogo, and Berthold E.-L. Ulungu. Median and average as tools for measuring, electing and ranking: new prospects. Fundamental Journal of Mathematics and Mathematical Sciences, 1(1):9-30, 2014.
[10] Ruffin-Benoit M. Ngoie, Zoïnabo Savadogo, and Berthold E.-L. Ulungu. New Prospects in Social Choice Theory: Median and average as tools for measuring, electing and ranking. Adv. Stud. Contemp. Math., 25(1): 19-38, 2015.
[11] Edurne Falco and José Luis Garcia-Lapresta. A distance-based extension of the majority judgement voting system. In Acta Universitatis Belii, Mathematics 18, pages 17-27, 2011.
[12] Edurne Falco, José Luis Garcia-Lapresta, and Llorenç Rosello. Allowing voters to be imprecise: à proposal using multiple linguistic terms. Information Sciences, 2013.
[13] Edurne Falco, José Luis Garcia-Lapresta, and Llorenç Rosello. Aggregating imprecise linguistic expressions. In P. Guo and W. Pedrycz, editors, Human-Centric Decision Making Models for Social Sciences. 2014. http://dx.doi.org/10.1007/978-3-642-39307-5_5.
[14] Gilbert W. Basset and Joseph Persky. Robust voting. Public Choice, 99:299-310, 1999. http://dx.doi.org/10.1023/A:1018324807861.
[15] Sylvain Durand. Sur quelques paradoxes en Théorie du Choix Social et en décision multicritère. PhD thesis, Université Joseph Fourier-Grenoble 1, 2000.
[16] Dan S. Felsenthal. Electoral Systems. Paradoxes, Assumptions, and Procedures, chapter 3: Review of Paradoxes Afflicting Procedures for Electing a Single Candidate. Springer-Verlag, Berlin Heidelberg, 2012.
[17] Jean-François Laslier. Electoral Systems, chapter 13: And the loser is... Plurality Voting. Springer-Verlag, Berlin Heilderberg, 2012.
[18] Warren D. Smith. Range voting. http://rangevoting.org/RangeVoting.html, 2012.
[19] Antoinette Baujard and Herrade Igersheim. Expérimentation du vote par note et du vote par approbation le 22 avril 2007. Premiers résultats. Revue économique, 60(1):189-201, 2009.
[20] Antoinette Baujard, Frédéric Gavrel, Herrade Igersheim, Jean-François Laslier, and Isabelle Lebon. Who's favored by evaluative voting ? an experiment conducted during the 2012 french presidentiel election. Cahier 2013-05, CNRS, 2013.
[21] Jean-François Laslier and Karine Van der Straeten. Une expérience de vote par assentiment. Revue française de science politique, 54(1):99-130, 2004. http://dx.doi.org/10.3917/rfsp.541.0099.
-
Downloads
-
How to Cite
Ngoie, R.-B., & Ulungu E-L, B. (2015). Mean-median compromise method as an innovating voting rule in social choice theory. International Journal of Applied Mathematical Research, 4(1), 177-182. https://doi.org/10.14419/ijamr.v4i1.4139Received date: 2015-01-08
Accepted date: 2015-02-02
Published date: 2015-02-20