Approximation operators by using finite family of reflexive relations


  • Hassan Abu-Donia
  • Amgad Salama





Rough set, Lower approximations, Upper approximations, Right neighborhood, Reflexive relation, Accuracy measure


In this paper, we generalize the two types of Yao’s lower and upper approximations, using finite number of reflexive relations. Moreover, we give a comparison between these types and study some properties.


[1] H. M. Abu-Donia, â€Multi Knowledge based rough approximations and applicationsâ€, Knowledge-Based systems, Vol.26, No.X, (2012), pp.20-29.

[2] H.M. Abu-Donia and A.S. Salama, â€Generalization of Pawlak’s rough approximation spaces by using δβ-open setsâ€, International Journal of Approximate Reasoning, Vol.53, (2012), pp.1094-1105.

[3] H. M. Abu-Donia, â€New Rough Set Approximation Spacesâ€, Abstract and Applied Analysis, Vol.2013, (2013), pp.1-7.

[4] H.M. Abu-Donia, â€Comparison between different kinds of approximations by using a family of binary relationsâ€, Knowledge-Based Systems, Vol.21, (2008), pp.911-919.

[5] M. Banerjee and M.K. Chakraborty, â€Rough consequence and rough algebra. In: Rough Sets, Fuzzy Sets and Knowledge Discovery â€, Proc. Int. Workshop on Rough Sets and Knowledge Discovery (RSKD ’93), Banff, Canada 1993, Ed. Ziarko, W.P. (London: Springer-Verlag), (1994), pp.196-207.

[6] G. Cattaneo, D. Ciucci, â€Algebraic structures for rough setsâ€, LNCS, Vol.3135, (2004), pp.208-252.

[7] G. Cattaneo, â€Abstract approximation spaces for rough theoriesâ€, in: L. Polkowski, A. Skowron (Eds.), Physica-Verlag, Heidelberg, , (Chapter 4) Vol.1, No.X, (1998), pp.59-98.

[8] G. Cattaneo, â€Generalized rough sets (preclusivity fuzzy intuitionstic (BZ)lattice)â€, studia logica, Vol.53, (1997), pp.47-77.

[9] M. Chuchro, â€On rough sets in topological Boolean algebras, in: W. Ziarko (Ed.)â€, Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, Berlin, (1994), pp.157-160.

[10] S. Comer, â€An algebraic approach to the approximation of informationâ€, Fundamenta Informaticae, Vol.14, (1991), pp.492-502.

[11] N.E. Tayar, R.S. Tsai, P.A. Carrupt, B. Testa, â€Octan-1-ol-water partition coefficients of zwitterionic _-amino acid, determination by centrifugal partition chromatography and factorization into steric/hydrophobic and polar componentsâ€, J. Chem. Soc., Perkin. Trans., Vol.2, (1992), pp.79-84.

[12] P. Eklund, M.A. Galan, Werner Gahler, â€Partially Ordered Monads for Monadic Topologies, Rough Sets and Kleene Algebrasâ€, Electronic Notes in Theoretical Computer Science, Vol.225, No.2, (2009), pp.67-81.

[13] T. P. Hong, Y. L. Liou and S. L. Wang, â€Fuzzy rough sets with hierarchical quantitative attributesâ€, Expert Systems with Applications, Vol.36, No.3, (2009), pp.6790-6799.

[14] M. A. Khan, and M. Banerjee, â€Formal reasoning with rough sets in multiple-source approximation systemsâ€, Int. J. Approximate Reasoning, Vol.49, No.2, (2008), pp.466-477.

[15] M. Kondo, â€On the Structure of Generalized Rough Setsâ€, Information Sciences, Vol.176, No.5, (2005), pp.589-600.

[16] J. Kortelainen, â€On Relationship between modified sets, topological space and rough setsâ€, On Relationship between modified sets, Vol.61, (1994), pp.91-95.

[17] T.Y. Lin, Q. Liu, â€Rough approximate operators: axiomatic rough set theoryâ€, in: W. Ziarko (Ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer, Berlin, (1994), pp.256-260.

[18] G. Liu and Y. Sai, â€A comparison of two types of rough sets induced by coveringsâ€, International Journal of Approximate Reasoning, Vol.50, (2009), pp.521-528.

[19] J.-S. Mi, W.-X. Zhang, â€An axiomatic characterization of a fuzzy generalization of rough setsâ€, Information Sciences, Vol.160, No.(1-4), (2004), pp.235-249.

[20] J.N. Mordeson, â€Rough set theory applied (fuzzy) ideal to theoryâ€, Fuzzy Sets and Systems, Vol.121, (2001), pp.315-324.

[21] E. Orlowska, â€Semantics analysis of inductive reasoningâ€, Theoretical Computer Science, Vol.43, (1986), pp.81-89.

[22] Z. Pawlak, A. Skowron, â€Rough sets: Some extensionsâ€, Information Sciences, Vol.177, (2007), pp.28-40.

[23] Z. Pawlak, A. Skowron, â€Rudiments of rough setsâ€, Journal of Information Sciences, Vol.177, (2007), pp.3-27.

[24] Z. Pawlak, A. Skowron, â€rough sets and Boolean reasoningâ€, Journal of Information Sciences, Vol.177, (2007), pp.41-73.

[25] Z. Pawlak, â€Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solvingâ€, Kluwer Academic Publishers, Dordrecht, The Netherlands, Vol.9, (1991).

[26] Z. Pawlak, â€Rough Probabilityâ€, Bull Polish Acad Sci, Vol.32, (1984), pp.607-612.

[27] Z. Pawlak, â€Rough setsâ€, International Journal of Computer and Information Sciences, Vol.11, (1982), pp.341-356.

[28] Z. Pawlak, â€Information systems, Theoretical Foundationsâ€, Information Systems, Vol.6, (1981), pp.205-218.

[29] J.A. Pomykala, â€Approximation operations in approximation spaceâ€, Bulletin of the Polish Academy of Sciences: Mathematics, Vol.35, (1987), pp.653-662.

[30] K. Qin, Z. Pei, â€On the topological properties of fuzzy rough setsâ€, Fuzzy Sets and Systems, Vol.151, No.3, (2005), pp.601-613.

[31] Y. Qian, J. Liang, Y. Yao, C. Dang â€MGRS: A multi-granulation rough setâ€, Information Sciences, Vol.180, (2010), pp.949-970.

[32] E.A. Rady, A.M. Kozae, M.M.E. Abd El-Monsef, â€Generalized rough setsâ€, Chaos, Solitons and Fractals, Vol.21, (2004), pp.49-53.

[33] C. Rauszer, â€Rough logic for multi-agent systemsâ€, In: Logic at Work 1992. LNCS (LNAI) Springer, Heidelberg, Vol.808, (1994), pp.161-181.

[34] R. Slowinski, D. Vanderpooten, â€A generalized definition of rough approximations based on similarityâ€, EEE Transactions on Knowledge and Data Engineering, Vol.12, No.2, (2000), pp.331-336.

[35] R. Slowinski, D. Vanderpooten, â€Similarity relation as a basis for rough approximationsâ€, in: P.P. Wang (Ed.), Advances in Machine Intelligence and Soft-Computing, Department of Electrical Engineering, Duke University, Durham, NC, USA,, (1997), pp.17-33.

[36] A. Skowron, â€Rough sets and vague conceptsâ€, Fundamenta Informaticae, Vol.64, No.1-4, (2005), pp.417-431.

[37] J. Stepaniuk and A. Skowron, â€Tolerance approximation spaces, Fundamenta Informaticaeâ€, journal, Vol.27, (1996), pp.245-253.

[38] H. Thiele, â€On axiomatic characterisations of crisp approximation operatorsâ€, Information Sciences, Vol.129, (2000), pp.221-226.

[39] Wei-Hua Xu and Wen-Xiu Zhang, â€Measuring roughness of generalized rough sets induced by a coveringâ€, Fuzzy Sets and Systems, Vol.158, (2007), pp.2443 - 2455.

[40] W.-Z. Wu, Y. Leung, J.-S. Mi, â€On characterizations of (I,T)-fuzzy rough approximation operators â€, Fuzzy Sets and Systems, Vol.154, No.1, (2005), pp.76-102.

[41] Y. Yao, â€On generalizing Pawlak approximation operatorsâ€, in: LNAI, Vol.1424, (1998), pp.298-307.

[42] Y. Yao, â€Relational interpretations of neighborhood operators and rough set approximation operatorsâ€, Information Sciences, Vol.101, (1998), pp. 239-259.

[43] Y.Y. Yao, â€Constructive and algebraic methods of the theory of rough setsâ€, Journal of Information Sciences, Vol.109, (1998), pp.21-47.

[44] Y. Y. Yao, â€Generalized rough set modelsâ€, in: Rough Sets in Knowledge Discovery, Polkowski, L. and Skowron, A. (Eds.), Physica-Verlag, Heidelberg, V (1998), pp.286-318.

[45] Y.Y. Yao, â€Two views of the theory of rough sets in finite universesâ€, International Journal of Approximate Reasoning, Vol.15, (1996), pp.291-317.

[46] Y.Y. Yao, T.Y. Lin, â€Generalization of rough sets using modal logic, Intelligent Automation and Soft Computingâ€, an International Journal, Vol.2, (1996), pp.103-120.

[47] W. Zakowski, â€On a concept of rough setsâ€, Demonstratio Mathematica, Vol.XV, (1982), pp.1129-1133.

[48] H. P. Zhang, Y. Ouyang, Zhudeng Wang, â€Note on Generalized rough sets based on reflexive and transitive relationsâ€, Information Sciences, Vol.179, (2009), pp.471-473.

[49] W. Zhu, â€Relationship among basic concepts in covering-based rough setsâ€, Information Sciences, Vol.179, (2009), pp.2478-2486.

[50] W. Zhu, â€Relationship between generalized rough sets based on binary relation and coveringâ€, Information Sciences, Vol.179 No. (3) 16 , (2009), pp.210-225.

[51] W. Zhu, â€Topological approaches to covering rough setsâ€, Information Sciences, Vol.177, No.6, (2007), pp.1499-1508.

[52] W. Zhu, F.-Y. Wang, â€On three types of covering rough setsâ€, IEEE Transactions on Knowledge and Data Engineering, Vol.19, No.8, (2007), pp.1131-1144.

[53] W. Zhu, F.-Y. Wang, â€Relationships among three types of covering rough setsâ€, in: IEEE GrC, (2006), pp.43-48.

[54] W. Zhu, F.-Y. Wang, â€Axiomatic systems of generalized rough setsâ€, in: RSKT 2006, LNAI, Vol.4062, (2006), pp.216-


[55] W. Zhu, F.-Y. Wang, â€A new type of covering rough setsâ€, in: IEEE IS 2006, Vol.4-6, (2006), pp.444-449.

[56] W. Zhu, F.-Y. Wang, â€Binary relation based rough setsâ€, in: IEEE FSKD 2006, LNAI, Vol.4223, (2006), pp.276-285.

[57] W. Ziarko, (ed.), â€Rough sets, fussy sets and knowledge discovery (RSKD’93)â€, Workshops in Computing, Springer- Verlag and British Coputer Society, London, Berlin,(1994).

[58] W. Ziarko, â€Variable precision rough set modelâ€, Journal of Computer and System Sciences, Vol.46, (1993), pp.39-59.

View Full Article: