# k-cordial labeling of fan and double fan

## DOI:

https://doi.org/10.14419/ijamr.v4i2.4530## Published:

2015-05-03## Keywords:

Abelian Group, k-Cordial Labeling, Fan, Double fan.## Abstract

We discuss here *k*-cordial labeling of fans. We prove that fans \(f_{n}\) are *k*-cordial for all *k*. We divide the proof of the result into two parts namely odd *k* and even *k*. Moreover we prove that double fans \(Df_{n}\) are *k*-cordial for all *k* and \(n=\frac{k+1}{2}\). The present authors are motivated by the research article entitled as 'A-cordial graphs' by A Hovey.Â

## References

[1] L. W. Beineke and S. M. Hegde, "Strongly multiplicative graphs", Discuss. Math. Graph Theory, Vol.21, (2001), pp.63-75.

[2] J A Gallian, "A dynamic survey of graph labeling", The Electronics Journal of Combinatorics, Vol.17, (2014).

[3] J Gross and J Yellen, Handbook of graph theory, CRC Press, (2004).

[4] M. Hovey, "A-cordial graphs", Discrete Math., Vol.93, (1991), pp. 183-194.

[5] K. K. Kanani and M. V. Modha, "7-cordial labeling of standard graphs", Internat. J. Appl. Math. Res., Vol.3(4), (2014), pp. 547-560.

[6] K. K. Kanani and M. V. Modha, "Some new families of 5-cordial graphs", Int. J. Math. Soft Comp., Vol.4(1), (2015),pp. 129-141.

[7] K. K. Kanani and N. B. Rathod, "Some new 4-cordial graphs", J. Math. Comput. Sci., Vol.4(5), (2014), pp. 834-848.

[8] R. Tao, " On k-cordiality of cycles, crowns and wheels", Systems Sci. Math. Sci., Vol.11, (1998), pp. 227-229.

[9] M. Z. Youssef, "On k-cordial labeling", Australas. J. Combin., Vol.43, (2009), pp. 31-37.