Properties of the characteristic polynomials and spectrum of Pn and Cn
-
2016-05-22 https://doi.org/10.14419/ijamr.v5i2.6106 -
Laplacian Matrix, Signless Laplacian Matrix, Normalized Laplacian Matrix, Seidel Adjacency Matrix, Spectral. -
Abstract
We consider a finite undirected and connected simple graph  with vertex set  and edge set .We calculated the general formulas of the spectra of a cycle graph and path graph. In this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and seidel adjacency matrix.
-
References
[1] Ayoobi,F., Omidi,G. R. and Tayfeh-Rezaie,B. “A note on graphs whosesignlessLaplacian has three distinct eigenvaluesâ€, Lin. Multilin. Alg. 59(2011) 701–706. (p. 220)
[2] Biggs, N.L. “Algebraic Graph Theoryâ€, Cambridge University Press, 2nd edition,Cambridge, 1993.
[3] Bondarenko, A. V. and Radchenko,D. V. “On a family of strongly regulargraphs with λ = 1â€, arXiv:1201.0383, Feb. 2012. (p. 132).
[4] Boulet, R.“Disjoint unions of complete graphs characterized by their Laplacian spectrumâ€, Electr. J. Lin. Alg. 18 (2009) 773–783. (p. 204).
[5] Cvetković, D., Doob, M. and H. Sachs, H. “Spectra of Graphs, Theory andApplicationsâ€, Academic Press, 1980.
[6] Cvetkovic, D., Rowlinson, P., and Simic, S. (2010) “An Introduction to the Theory of Graph Spectra Cambridge U.P.â€, New York.
[7] Das, K.C. (2004) “The Laplacian spectrum of a graphâ€,Comput Math.Appl.48,715724.http://dx.doi.org/10.1016/j.camwa.2004.05.005.
[8] Davis,P.J. “Circulant Matricesâ€, AMS Chelsea Publishing, 1994.
[9] El seedy, E., Hussein, S. and AboElkher, A. “Spectra ofsome simple graphsâ€,Math. Theory and Mod. 5 (2015) 115-121.
[10] Fiedler, M. “Algebraic connectivity of graphsâ€, Czech. Math. J., 1973; 23:298-305.
[11] Godsil C. and Royle, G. “Algebraic Graph Theoryâ€, Springer Verlag, New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0163-9.
[12] Kaveh, A. “Structural Mechanics: Graph and Matrix Methodsâ€, 3rd edition, ResearchStudies Press, Somerset, UK, 2004.
[13] Kaveh, A. “Optimal Structural Analysisâ€, 2nd edition, John Wiley, UK, 2006.http://dx.doi.org/10.1002/9780470033326.
[14] Kel’mans,A.K. “The number of trees in a graphâ€. I. Automat. iTelemeh. 26 (1965)2194–2204 (in Russian); transl. Automat. Remote Control 26 (1965) 2118–2129.
[15] Mohar, B. “The Laplacian spectrum of graphs, entitled Graph Theory, Combinatorics and Applicationsâ€, edit. Y. Alavi et al., Vol. 2, John Wiley, NY, 1991, pp 871-898.
[16] Pothen, A. Simon, H. and Liou, K.P. “Partitioning sparse matrices with eigenvectors of graphsâ€, SIAM J. Matrix Anal. Appl., 1990; 11:430-452. http://dx.doi.org/10.1137/0611030.
[17] Spielman, D. (2004) “Spectral graph theory and its Applicationsâ€, lecture notes fall, onlineviahttp://www.cs.yale.edu/homes/spielman/eigs
[18] Topping, BHV and Sziveri, J. “Parallel subdomain generation methodâ€, Proc. CivilComp, Edinburgh, UK, 1995.
-
Downloads
-
How to Cite
El Seidy, E., Hussein, S. E., & Mohamed, A. (2016). Properties of the characteristic polynomials and spectrum of Pn and Cn. International Journal of Applied Mathematical Research, 5(2), 132-137. https://doi.org/10.14419/ijamr.v5i2.6106Received date: 2016-04-12
Accepted date: 2016-05-10
Published date: 2016-05-22