Properties of the characteristic polynomials and spectrum of Pn and Cn

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    We consider a finite undirected and connected simple graph  with vertex set  and edge set .We calculated the general formulas of the spectra of a cycle graph and path graph. In this discussion we are interested in the adjacency matrix, Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and seidel adjacency matrix.


  • Keywords


    Laplacian Matrix; Signless Laplacian Matrix; Normalized Laplacian Matrix; Seidel Adjacency Matrix; Spectral.

  • References


      [1] Ayoobi,F., Omidi,G. R. and Tayfeh-Rezaie,B. “A note on graphs whosesignlessLaplacian has three distinct eigenvalues”, Lin. Multilin. Alg. 59(2011) 701–706. (p. 220)

      [2] Biggs, N.L. “Algebraic Graph Theory”, Cambridge University Press, 2nd edition,Cambridge, 1993.

      [3] Bondarenko, A. V. and Radchenko,D. V. “On a family of strongly regulargraphs with λ = 1”, arXiv:1201.0383, Feb. 2012. (p. 132).

      [4] Boulet, R.“Disjoint unions of complete graphs characterized by their Laplacian spectrum”, Electr. J. Lin. Alg. 18 (2009) 773–783. (p. 204).

      [5] Cvetković, D., Doob, M. and H. Sachs, H. “Spectra of Graphs, Theory andApplications”, Academic Press, 1980.

      [6] Cvetkovic, D., Rowlinson, P., and Simic, S. (2010) “An Introduction to the Theory of Graph Spectra Cambridge U.P.”, New York.

      [7] Das, K.C. (2004) “The Laplacian spectrum of a graph”,Comput Math.Appl.48,715724.http://dx.doi.org/10.1016/j.camwa.2004.05.005.

      [8] Davis,P.J. “Circulant Matrices”, AMS Chelsea Publishing, 1994.

      [9] El seedy, E., Hussein, S. and AboElkher, A. “Spectra ofsome simple graphs”,Math. Theory and Mod. 5 (2015) 115-121.

      [10] Fiedler, M. “Algebraic connectivity of graphs”, Czech. Math. J., 1973; 23:298-305.

      [11] Godsil C. and Royle, G. “Algebraic Graph Theory”, Springer Verlag, New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0163-9.

      [12] Kaveh, A. “Structural Mechanics: Graph and Matrix Methods”, 3rd edition, ResearchStudies Press, Somerset, UK, 2004.

      [13] Kaveh, A. “Optimal Structural Analysis”, 2nd edition, John Wiley, UK, 2006.http://dx.doi.org/10.1002/9780470033326.

      [14] Kel’mans,A.K. “The number of trees in a graph”. I. Automat. iTelemeh. 26 (1965)2194–2204 (in Russian); transl. Automat. Remote Control 26 (1965) 2118–2129.

      [15] Mohar, B. “The Laplacian spectrum of graphs, entitled Graph Theory, Combinatorics and Applications”, edit. Y. Alavi et al., Vol. 2, John Wiley, NY, 1991, pp 871-898.

      [16] Pothen, A. Simon, H. and Liou, K.P. “Partitioning sparse matrices with eigenvectors of graphs”, SIAM J. Matrix Anal. Appl., 1990; 11:430-452. http://dx.doi.org/10.1137/0611030.

      [17] Spielman, D. (2004) “Spectral graph theory and its Applications”, lecture notes fall, onlineviahttp://www.cs.yale.edu/homes/spielman/eigs

      [18] Topping, BHV and Sziveri, J. “Parallel subdomain generation method”, Proc. CivilComp, Edinburgh, UK, 1995.


 

View

Download

Article ID: 6106
 
DOI: 10.14419/ijamr.v5i2.6106




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.