# On the polynomial solution of the first PainlevÃ© equation

## DOI:

https://doi.org/10.14419/ijamr.v6i1.6559## Published:

2017-03-22## Keywords:

PainlevÃ© transcendent, first PainlevÃ© equation, optimization methods.## Abstract

The PainlevÃ© equations and their solutions arises in pure, applied mathematics and theoretical physics. In this manuscript we apply the Optimal Homotopy Asymptotic Method (OHAM) for solving the first PainlevÃ© equation. Our approximation technique is based on the use of polynomial solutions, which are shown to be accurate when compared to the computed numerical solutions, thus providing a very close description of the evolution of the system.

## References

[1] PainlevÃ© P., Sur les Ã©quations diffÃ©rentielles du second ordre et dâ€™ordre superieur dont lâ€™intÃ©grale gÃ©nÃ©ral est uniforme, Acta Math. 25 (1902), 1-85.

[2] H. Segur and M.J. Ablowitz. Asymptotic solutions of nonlinear evolution equations and a PainlevÃ© transcedent. Physica D, (1993), 3:165.

[3] M. Adler, T. Shiota, and P. van Moerbeke. Random matrices, vertex operators and the Virasoro algebra. Phys. Lett. A, 208 (1995), 67-78.

[4] M. Shiroishi, M. Takahashi, and Y. Nishiyama. Emptiness formation probability for the one-dimensional isotropic XY model. J. Phys. Soc. Jpn., 70 (2001), 3535.

[5] B.M. McCoy, J.H. Perk, and R.E. Shrock. Correlation functions of the transverse Ising chain at the critical field for large temporal and spatial separation. Nucl. Phys. B, 220 (2002), 269.

[6] T. Kanna, K. Sakkaravarthi, C. Senthil, M. Lakshmanan, and M. Wadati. PainlevÃ© singularity structure analysis of three component Gross-Pitaevskii type equations. J. Math. Phys., 50 (2009), 113520.

[7] E.A. Moskovchenko and V.P. Kotlyarov. Periodic boundary data for an integrable model of stimulated Raman scattering: long-time asymptotic behavior. J. Phys. A: Math. Gen., 43 (2010), 5.

[8] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete PainlevÃ© equations and their appearance in quantum gravity. Commun. Math. Phys., 142 (1991), 313.

[9] M. Adler, T. Shiota, and P. van Moerbeke. Random matrices, vertex operators and the Virasoro algebra. Phys. Lett. A, 208 (1995), 67-78.

[10] B. Dubrovin. PainlevÃ© trascendents and two-dimensional topological field theory. CRM Math. Phys., (1999) pages 287-412.

[11] Gariel, G. Marcilhacy, and N.O. Santos. Stationary axisymmetric solutions involving a third order equation irreducible to PainlevÃ© transcendents. J. Math. Phys., 49 (2008), 022501.

[12] X. Cao and C. Xu. A Backlund transformation for the Burgers hierarchy. Abs. App. Ana., (2010), 241898.

[13] S.Y. Lee, R. Teodorescub, and P. Wiegmannc. Shocks and nite-time singularities in Hele-Shaw ow. Physica D, 238 (2009), 1113.

[14] M. Florjanczyk and L. Gagnon. Exact solutions for a higher-order nonlinear Schrodinger equation. Phys. Rev. A, 41 (1990), 4478.

[15] Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C., Quantum geometry of refined topological strings, J. High Energy Phys. (2012), no. 11, 019, 53 pages, arXiv:1105.0630.

[16] Aganagic M., Dijkgraaf R., Klemm A., MariÃ±o M., Vafa C., Topological strings and integrable hierarchies, Comm. Math. Phys. 261 (2006), 451-516, hep-th/0312085.

[17] B. Fornberg and J.A.C. Weideman, A numerical methodology for the Painleve equations, Journal of Computational Physics, 230 (2011), pp. 5957-5973.

[18] K. El-Kamel, Sinc numerical solution for solitons and solitary waves, J. Comput. Appl. Math., 130 (2001), pp. 283-292.

[19] E. Hesameddini and S. Shekarpaz, Wavelet solutions of the first Painleve equation, 23rd International Conference of Jangjeon Mathematical Society, Shahid Chamran Uinvesity of Ahvaz, Ahvaz, Iran, (2010).

[20] Marinca V, Herisanu N, Bota C, Marinca B. An optimal homotopy asymptotic method applied to the steady flow of fourth-grade fluid past a porous plate. Appl Math Lett 22 (2009), 245-51.

[21] Herisanu N, Marinca V. Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method. Comp Math Appl 60 (2010), 1607-15.

[22] Marinca V, Herisanu N. Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. Journal of Sound and Vibration 329 (2010), 1450-1459.

[23] Marinca V, Herisanu N, Nemes I. Optimal homotopy asymptotic method with application to thin film flow. Central European Journal of Physics 6 (2008), 648-53.

[24] Marinca V, Herisanu N. An optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int Commun Heat Mass Transfer 35 (2008), 710-5.

[25] Marinca V, Herisanu N. Nonlinear dynamical systems in engineering. Some Approximate Approaches. (2011), Springer, Verlag.

[26] Islam S, Shah RA, Ali I. Optimal homotopy asymptotic solutions of Couette and Poiseuille flows of a third grade fluid with heat transfer analysis. Int J Nonlinear Sci Numer Simul 11(6) (2010), 389-400.

[27] Idrees M, Islam S, Tirmizi SIA, Haq S. Application of the optimal homotopy asymptotic method for the solution of the Kortewegâ€“de Vries equation. Mathematical and Computer Modelling 55 (2012),

1324-33.

[28] Mohsen S, Hamid RA, Domairry D, Hashim I. Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method.

Sains Malaysiana 41(10), (2012), 1281-5.

[29] Ghoreishi M, Ismail AIM, Alomari AK. Comparison between homotopy analysis method and optimal homotopy asymptotic method for nth-order integro-differential equation. Math Meth Appl Sci 34 (2011), 1833-42.