Role of weight functions in the study of a Dirichlet problem concerning the Laplace problem with parameter spectral and non-homogeneous in a cone
-
2017-05-19 https://doi.org/10.14419/ijamr.v6i2.7512 -
Cone, Weight Function, Laplacian Operator. -
Abstract
In this work, we study the problem governed by the Laplacian operator perturbed by a spectral parameter and affected by a weight function in a cone. First, the study will be done in a space sector. We will show a theorem that links the study of this problem .This study is it provides original results in a richer functional space, more it covers the classical case.
Â
-
References
[1] A. Avantaggiati Et M. Troisi, spazidisobolev con peso e problemielliptici in angolo, dimat .pura e appl , 1973 .
[2] M. Borsuk Et V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains Elsevier B, V North-Holland, 2006.
[3] P. Grisvard, Problème de Dirichlet dans un cône .Ricerche di Matematica, vol. XX, p. 175-192, 1971.
[4] V. Khoan, Distributions analyse de Fourier operateur aux dérivéespartielles, Vuibert , 1972 .
[5] J. L. LIONS and E. MAGENES, Problems in Extreme Cases Nonhomogeneous and Applications, Vol. 1, Dunod, 1968.
[6] V. A. Kondratiev, Boundary value problems for elliptic equations Math, soc 1967.
[7] Pham The Lai, Problème de Dirichlet dans un cône avec paramètre spectral pour uneclassed’espace de Sobolev a poids, SEDP exp . N_6 p. 1-14, 1979.
-
Downloads
-
How to Cite
Ahmed, H., & Mohammed Saïd, S. (2017). Role of weight functions in the study of a Dirichlet problem concerning the Laplace problem with parameter spectral and non-homogeneous in a cone. International Journal of Applied Mathematical Research, 6(2), 52-57. https://doi.org/10.14419/ijamr.v6i2.7512Received date: 2017-03-27
Accepted date: 2017-04-24
Published date: 2017-05-19