@article{Sajid_2015, title={Singular Values of One Parameter Family \(\lambda ((e^{z}-1)/z)^{m}\)}, volume={4}, url={https://sciencepubco.com/index.php/ijamr/article/view/4359}, DOI={10.14419/ijamr.v4i2.4359}, abstractNote={In the present paper, the singular values of one parameter family of entire functions \(f_{\lambda}(z)=\lambda\bigg(\dfrac{e^{z}-1}{z}\bigg)^{m}\) and \(f_{\lambda}(0)=\lambda\), \(m\in \mathbb{N}\backslash \{0\}\), \(\lambda\in \mathbb{R} \backslash \{0\}\), \(z \in \mathbb{C}\) is investigated. It is shown that all the critical values of \(f_{\lambda}(z)\) lie in the left half plane. It is also found that the function \(f_{\lambda}(z)\) has infinitely many bounded singular values and lie inside the open disk centered at origin and having radius \(|\lambda|\).}, number={2}, journal={International Journal of Applied Mathematical Research}, author={Sajid, Mohammad}, year={2015}, month={Mar.}, pages={295–298} }