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Abstract 

 

In this paper, we propose a new bivariate distribution with the Gompertz marginals. Some properties of this new 

bivariate distribution have been investigated. Several properties of this distribution have been discussed. Parameters 

estimation using moments and maximum likelihood methods are obtained. A numerical illustration experiments have 

been performed to see the behavior of the MLEs. One data set has been analyzed for illustrative purpose. 
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1 Introduction 

The Gompertz distribution was originally introduced by Gompertz [8].This distribution is widely used to describe 

human mortality and establish actuarial tables. It has been used as a growth model and also used to fit the tumor growth. 

The Gompertz distribution is related by a simple transformation to certain distribution in the family of distributions 

obtained by Pearson. Applications and more recent survey of the Gompertz distribution can be introduced by Ahuja and 

Nash [2].  

In many practical problems, multivariate lifetime data arise frequently, and in these situations it is important to consider 

different multivariate models that could be used to model such multivariate lifetime data. For an encyclopedia treatment 

on various multivariate models and their properties and applications, one may refer to the book by Kotz et al. [9]. 

In fact, shock models are used in reliability to describe different applications. Shocks can refer for example to damage 

caused to biological organs by illness or environmental causes of damage acting on a technical system, El-Gohary and 

Sarhan [6], and A-hameed and Proschan [1]. Also Al-Ruzaiza and El-Gohary have obtained a new class of bivariate 

distribution with Pareto of Marshall-Olkin type [4]. 

The objective of this paper is to introduce a new bivariate Gompertz distribution of Marsall-Olkin type. It is considered 

as a distribution of the life times of two dependent components each has a Gompertz distribution. Also discuss about the 

computation of the maximum likelihood estimators and moment generating function. 

The paper is organized as follows. Section 2 presents the shock model yielding the new bivariate Gompertz distribution. 

The joint survival and probability density function of bivariate Gompertz distribution is obtained. Section 3 presents the 

joint moment generating function of this bivariate distribution and its marginal moment generating functions. Section 4 

discusses the maximum likelihood estimation of proposed new bivariate Gompertz distributions. Section 5 presents the 

simulation and one data analysis results. Finally we conclude the paper in section 6. 

 

2 The new bivariate Gompertz distribution 

We define a new bivariate Gompertz distribution (   ), shortly denoted by     distribution. We start with the joint 

survival function of the distribution and then derive the corresponding joint probability density function. 

 

2.1   The Joint Survival Function 
 

It is assumed that the univariate Gompertz distribution with the shape parameter α>0 and the scale parameter λ>0 has 

the following probability density function, cumulative distribution function and survival function for x>0; 
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respectively. Suppose    follows          ,                          and they are mutually independent. Now 

define               and               then the bivariate vector           has the new bivariate Gompertz 

distribution with the parameters                 and it will be denoted by                 distribution. 

We now study the joint survival distribution of the random variables    and   . The following lemma gives the joint 

survival function of    and    , which is the survival function of the     distribution. 

Lemma2.1: The joint survival functions of    and     is 
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where               

Proof: Since 

                           

we have 

                                            

                            
                               

as             are mutually independent, we readily obtain 

                                             

                                                                                                                           (4) 

Substituting from (2) into (4), we obtain (3), which completes the proof of the lemma. 

Corollary: The joint survival function of the                 can also be written as 

                                               

               

                                            

                                            

                                                  

  

 

2.2   The joint probability density function 
 

The following theorem gives the joint probability density function of the     distribution. 

Theorem 2.1: If the joint survival function of          is as in (3), the joint probability density function of          is 

given by 
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Proof: Let us first assume that       In this case,             in (3) becomes 
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Then, upon differentiation, we obtain the expression of  
   

        
             

      
 distribution to be  

 
        given 

in (5). Similarly, we find the expression of  
   

        distribution to be  
 
        when       but,  

 
      

cannot be derived in a similar way. For this reason, we use the identity 
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One can verify that 
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and  
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From (10) and (11), we then get 
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This completes the proof of the theorem. 

 

2.3   Marginal and conditional probability density functions 
 

In this section, we derive the marginal density functions of    and the conditional density functions of              

    .  We also present the joint moment generating function of    and   . 

Theorem 2.2: The marginal pdf of            is given by 

 
      

         
     

        
 

                                                                                                 (13) 

Proof: The marginal pdf of    can be derived from the marginal survival function of    say        as follows: 

                                                 

And since    is independent of   , we simply have 

          
        

 
          

From which we readily derive the pdf of              
     

   
  as in (13). 

 

2.4   Conditional probability density functions 
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Having obtained the marginal probability density functions of    and     we can now derive the conditional probability 

density functions as presented in the following theorem. 

Theorem 2.3: The conditional pdf of     given        denoted by  
   
                    is given by 
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Where 

 
     

           
          

     
        

 
         

         
   
 
         

 

 
     

              
     

   
 
          

 
     

           
    

   
 
         

       
 

Proof: The theorem follows readily upon substituting for the joint pdf of         in (6), (7) and (8) and the marginal 

pdf of            in (13), in the relation 

 
     

        
 
     

       

 
  
    

              

 

3 Moment generating functions 

In this subsection, we present the joint moment generating function of         and the marginal moment generating 

function of             

Lemma 3.1 The moment generating function of            is given by 
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Proof:  Sarhan and Balakrishnan [10] introduced the definition of the moment generating function of      as follows 

   
                              

 

 

 

And substituting for  
  
     from (13) when      we get 

   
             

               

 

 

            
        

Using the Taylor series expansion of            
   

 we get 

           
     

            
       

  

 

   

                                                                                                    (16) 

We can express 
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From which we readily derive the expression of    
     given in (15). 

Note that the moment generating function    
     can be used, instead of the marginal pdf  

  
     to derive the 

marginal expectation of    as 

       
 

   
    

         
 

From (15), we obtain 

 
 

   
   

             
      

            
 

  

 

   

 

         
 

In which if we set       we obtain        

Similarly, the second moment of     can be derived from    
     as its second derivative at     .The expression for 

the function    
     in (15) can be used to derive the r

th
 moment of    as given below 

    
    

    

   
    

             
      

            
 

  

 

   

  

           
 

The following theorem gives the joint moment generating function of       . 

Theorem 3.2:  The joint moment generating function of         is given by 
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Proof: The joint moment generating function of         is given by 
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Substituting from (6) into     
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Using the relation in (16)     becomes as following 
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Using the relation in (16)    becomes as following 
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Similarly we can obtain    as follows 
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And we can obtain    as follows 
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Upon substituting from (19), (20) and (21) we can derive the expression for          given in (17) 

4 Maximum likelihood estimation  

Suppose                     is a random sample from                 distribution. 

Consider the following notation  

                                                                     

The likelihood of the sample of size   given by: 

                          

  

   

            

  

   

          

  

   

 

Based on the observations, and using the density functions (6), (7) and (8) the likelihood function becomes: 

                         
  
             

        
 

            
   
 

          

  

   

 

                                         
  
             

   
 

            
        

 
          

  

   

 

                                  
         

           
 

         

  

   

 

 

The log-likelihood function can be written as 

                              
       

 
          

  

   

 
  
 
          

  

   

      

  

   

 

                                    

  

   

                 
       

 
          

  

   

       

  

   

      

  

   

 

                               
  
 
          

  

   

              

  

   

 
          

 
         

  

   

 

       (22) 

Computing the first partial derivatives of (22) with respect to          and    and setting the results equal zeros, we get 

the likelihood equations as in the following form  
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To get the MLEs of the parameters          and  , we have to solve the above system of four non-linear equations 

with respect to          and  . The solution of equations (21), (22), (23) and (24) is not possible in closed form, so 

numerical technique is needed to get the MLEs. 

The approximate confidence intervals of the parameters based on the asymptotic distributions of their MLEs are derived. 

For the observed information matrix of          and  , we find the second partial derivatives as follows 

   

   
 
 

   

        
 

  

     
                   

   

      
                    

   

      
 

   

        
 

   

     
   

     
              

  

  

   

  
     

              

  

  

   

  
    

            

  

  

   

 

   

   
 
 

   

     
 

  

        
              

   

      
 

   

        
 

   

     
   

     
              

  

  

   

  
     

              

  

  

   

  
    

            

  

  

   

 

   

   
 
 

   

        
 

  

        
 

  

     
 

   

     
   

     
              

  

  

   

  
     

              

  

  

   

  
    

            

  

  

   

 

  

   
          

      
  

           
               

  
 

  

   

   
      

            
               

  

  

   

 

              
      

             
               

  

  

   

         
       

             
              

  

  

   

 

                      
     

           
            

  

  

   

 

Then the observed information matrix is given by 

    

            
            
            
            

  

So the variance-covariance matrix may be approximated as 

    

            
            
            
            

 

  

  

            
            
            
            

  

5 Simulation and data analysis 

In this section first we present Monte Carlo simulation results to study the behavior of the MLEs and then present one 

data analysis results mainly for illustrative purpose. 
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5.1   Simulation Results 
 

In this subsection we present some simulation results to see how the MLEs behave for different sample sizes and for 

different initial parameter values. We have used different sample sizes namely     , 40, 60, 80 and 100 and two 

different sets of parameter values: Set 1:                    1 and Set 2:                     . 

In each case we have computed the MLEs of the unknown parameters by maximizing the log-likelihood function (36). 

We compute the average estimates and mean square error over 1000 replications and the results are reported in Tables 1. 

Some of the points are quite clear from Tables 1. In all the cases the performances of the maximum likelihood estimate 

are quite satisfactory. It is observed that as sample size increases the average estimates and the mean squared error 

decrease for all the parameters, as expected.  

 

5.2   Data Analysis  
 

The following data represent the American Football (National Football League) League data and they are obtained from 

the matches played on three consecutive weekends in 1986. The data were first published in 'Washington Post' and they 

are also available in Csorgo and Welsh [5]. 

It is a bivariate data set, and the variables X1 and X2 are as follows: X1 represents the 'game time' to the first points 

scored by kicking the ball between goal posts, and X2 represents the 'game time' to the first points scored by moving the 

ball into the end zone. These times are of interest to a casual spectator who wants to know how long one has to wait to 

watch a touchdown or to a spectator who is interested only at the beginning stages of a game. 

The data (scoring times in minutes and seconds) are represented in Table 2. The data set was first analyzed by Csorgo 

and Welsh [5], by converting the seconds to the decimal minutes, i.e. 2:03 has been converted to 2.05, 3:59 to 3.98 and 

so on. We have also adopted the same procedure. Here also all the data points are divided by 100 just for computational 

purposes. 

 
Table 1: The average of MLEs and the associated mean square errors (within brackets below) 

 Set 1 Set 2 

Model n                             2                 

n=20 0.466 0.464 1.841 2.669 0.538 0.54 2.035 2.685 

(0.352) (2.592) (1.166) (3.974) (0.293) (2.207) (1.728) (3.955) 

n=40 0.504 0.501 1.864 2.305 0.578 0.581 2.057 2.339 

(0.277) (2.276) (0.94) (2.166) (0.217) (2.054) (1.365) (2.3) 

n=60 0.517 0.513 1.896 2.204 0.592 0.587 2.076 2.257 

(0.254) (2.234) (0.932) (1.74) (0.192) (2.025) (1.335) (1.886) 

n=80 0.525 0.516 1.904 2.151 0.594 0.584 2.078 2.22 

(0.241) (2.217) (0.927) (1.524) (0.183) (2.024) (1.294) (1.712) 

n=100 0.532 0.529 1.913 2.096 0.604 0.599 2.099 2.152 

(0.231) (2.176) (0.921) (1.367) (0.173) (1.979) (1.108) (1.516) 

 
Table 2: American football league (N F L) data 

X1 X2 X1 X2 X1 X2 

2.05 3.98 5.78 25.98 10.40 10.25 

9.05 9.05 13.80 49.75 2.98 2.98 

0.85 0.85 7.25 7.25 3.88 6.43 

3.43 3.43 4.25 4.25 0.75 0.75 

7.78 7.78 1.65 1.65 11.63 17.37 

10.57 14.28 6.42 15.08 1.38 1.38 

7.05 7.05 4.22 9.48 10.53 10.53 

2.58 2.58 15.53 15.53 12.13 12.13 

7.23 9.68 2.90 2.90 14.58 14.58 

6.85 34.58 7.02 7.02 11.82 11.82 

32.45 42.35 6.42 6.42 5.52 11.27 

8.53 14.57 8.98 8.98 19.65 10.70 

31.13 49.88 10.15 10.15 17.83 17.83 

14.58 20.57 8.87 8.87 10.85 38.07 

 

The variables    and    have the following structure: (i)        means that the first score is a field goal (ii)       

means the first score is a converted touchdown, (iii)      means the first score is an unconverted touchdown or 
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safety. In this case the ties are exact because no 'game time' elapses between a touchdown and a point-after conversion 

attempt. Therefore, here ties occur quite naturally and they cannot be ignored. It should be noted that the possible 

scoring times are restricted by the duration of the game but it has been ignored similarly as in Csorgo and Welsh [5]. 

If we define the following random variables: 

  = time to first field goal 

   = time to first safety or unconverted touchdown 

   = time to first converted touchdown, 

Then                and               Therefore,         has a similar structure as the Marshall-Olkin 

bivariate exponential (MOBE) model or the proposed     model. 

We analyze the data using the     model. We have taken the initial guesses of          and   are all equal to 1. The 

estimate of          and   become 0.288, 1.412, 7.565 and 4.698 respectively. The corresponding log-likelihood value 

is 66.559. The 95% confidence intervals of          and   are (0, 0.859), (0.512, 2.312), (5.121, 10.01), (2.696, 6.7) 

respectively. 

 

6 Conclusion 

In this paper we have proposed bivariate Gompertz distribution function of Marshall-Olkin type whose marginals are 

Gompertz distributions. The moment generating function of proposed distribution is derived. The generation of random 

samples from proposed bivariate distribution is very simple, and therefore Monte Carlo simulation can be performed 

very easily for different statistical inference purpose. It is observed that the MLEs of the unknown parameters can be 

obtained by solving four non-linear equations and Monte Carlo simulation indicate that the performance of the MLEs 

are quite satisfactory. Analysis of one real data indicates that the performance of the confidence intervals based on 

asymptotic distribution. 
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