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Abstract

In this letter, an adaptive synchronization and parameters identi-
fication scheme is proposed for two coupled chaotic Newton-Leipnik
systems. Based on Lyapunov stability theory an adaptive controller is
designed to make the states of two identical chaotic Newton-Leipnik
system with unknown system parameters asymptotically synchronized.
Especially when some unknown parameters are positive, we can make
the controller more simple, beside the controller is independent of those
positive uncertain parameters. Numerical simulation results are pre-
sented to visualize the effectiveness and feasibility of the developed ap-
proaches.
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1 Introduction

Since the pioneer works by Ott, Grebogi and Yorke(1990) [1] and Pecorra and
Carroll (1990) [2], chaos control and synchronization has received increasing
attention due to its theoretical challenges and its potential application to var-
ious disciplines. Synchronization in biological systems is one of the fascinating
area that has attracted a lots of renewed attention. Various modern synchro-
nization methods, such as adaptive control [3,4], backstepping design [5], active
control [6], nonlinear feedback control [7] , impulsive control [8] has been suc-
cessfully applied to obtain chaos synchronization in recent years. Basically,
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chaos synchronization problem can be formulated as follows: given a chaotic
system, which is considered as the master system, and we have to formulate an-
other system which is considered as the slave system which synchronizes to the
master system. Tarai et.al. studied synchronization of bidirectionally coupled
chaotic Chen’s system with delay in 2007 [9] and they also observed synchro-
nization of generalised linearly bidirectionally coupled unified chaotic system
in 2009 [10]. Synchronization via adaptive control has been successfully tested
in variety of non-linear dynamical systems including Unified chaotic system,
Lu system and Chen system [11,12,13]. In 1994 J.K.John and R.E.Amritkar
have studied synchronization of unstable orbits using adaptive control [14].
Adaptive synchronization of Lu system with uncertain parameters was stud-
ied by Ellabasy et.al. [15]. Dai et.al. have investigated chaos synchronization
by using intermittent parametric adaptive control method in 2001 [16]. Chen
et.al. have studied parameters identifications and synchronizations of chaotic
systems based upon adaptive control [17]. Adaptive control for the synchro-
nization of Chen system via a single variable was studied by Wang et.al [18].
In 2004, adaptive control of uncertain Lu system was studied by Wu et.al. [19].
Aim of this work is to study chaos synchronization of two coupled Newton-
Leipnik system with former case where few parameters are unknown and the
latter case where all parameters are unknown. In this paper, an adaptive con-
troller is derived based on Lyapunov stability theory where both master and
slave Newton-Leipnik system have unknown parameters. We introduce the
parameters update law into the design of the adaptive synchronization con-
troller based on Lyapunov stability theorem. Especially, when some unknown
uncertain parameters are positive, we can make the controller more simple,
besides the controller is independent of those positive uncertain parameters.

2 Newton-Leipnik System

The Newton-Leipnik system is charaterized by the following differential equa-
tion

r = —ar+y -+ 10yz
= —r—04y+ 5xz
Z2 = bz—bxy (1)

where x, y and z are state variables and a, b are unknown positive constant
parameters. The Newton-Leipnik system exhibits a chaotic attractor at the
parameter values a = 0.4 and b = 0.175 shown in Fig.1(a)
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Figure 1: Fig.1(a). Chaotic attractor of Newton-Leipnik system at a = 0.4
and b = 0.175, Fig.1(b). Time evolution of z; and xs states, Fig.1(c). Time
evolution of y; and y, states and Fig.1(d). Time evolution of z; and z, states
when the control functions are deactivated.

3 Formulation of the Problem

In order to observe the synchronization behavior in the Newton-Leipnik sys-
tem, we have two Newton-Leipnik systems where the drive system with three
state variables denoted by the subscript 1 and the response system having
identical equations denoted by the subscript 2. The initial conditions for the
drive system are different from that of the response system. The drive and
response systems are defined as follows.

¥ = —axy+y; + 10y;2;
1 = —x1— 04y + 5112
21 = bz —bxiy (2)
and
Ty = —axs + Y2 + 10y220 + us (1)
Yo = —x9— 0.4y + drozs + us(t)
Zy = bz — Doy + us(t) (3)

where U = [u(t), ua(t), uz(t)]” is the controller function introduced in the re-
sponse system. The controller is determined for the purpose of synchronizing
of two coupled identical Newton-Leipnik systems with the same unknown pa-
rameters a and b but with different in initial conditions.

Substracting equation (2) from equation (3) yields the error dynamical system
as

€1 = —aer + ey + 10(ezes + eaz1 + esyr) + uq(t)
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ég = —€1 — 0.462 + 5(6163 +e121 + 632}1) + Ug(t)
ég = 663 — 5(6162 + eox + 61’3/1) + Ug(t) (4)

where e; = 9 — x1,e9 = Yo — y; and e3 = 2o — z;. Our goal is to find a
controller U = [uy(t), ua(t), uz(t)]” and a parameter update law for equation
(4) such that the states of the response system (3) and the states of the drive
system (2) are globally synchronized asympotically i.e.

lim; . || e(t) |[=0 forall a€ R and b>0
where e(t) = [ey, e, e3]”

4 Adaptive Synchronization of Newton-Leipnik
System with Single Parameter Estimation

1 1 1
Vie,a) = —ele4 —a* = i(ef +e5+e3) +

5 5 a* (5)

|~

where a = a — a, a is an estimated value of the unknown parameter a. Now
V < —wl(e) (6)

where w(e) = e? + 0.4e3 + €2

We therefore need to find a controller U and a parameter estimation and update
law @ to guarantee that for all e € R® the equality (6) holds. There are many
possible choices for the controller U. We choose

u = (a—1)e
Uy = —(d€2 + 156121)
us = —b€3 - 106162 - 561y1 — €3 (7)

and the parameter estimation update law a.

= e (8)
By the choice of the controller (7) the error dynamical systems becomes

€1 = —e1 4 e+ 10(exes + €221 + esy1)
€y = —ep —0.4ey+ 5(eres — 2e121 + e3xq) — aeg
63 = —e3— 5(36162 _I_ €201 + 261y1) (9)
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Figure 2: Fig.2(a). Time evolution of z; and z, states, Fig.2(b). Time evo-
lution of y; and y, states, Fig.2(c). Time evolution of z; and zy states and
Fig.2(d). Display the error systems tends to zero when the control functions

are activated with the parameter estimation update law a = e3.

Under with this choice

A

V = 6161 + 6262 + 6363 — (CL — a)

= —¢7 —0.4el — el

S

This leads to

lim; o || e(t) [=0 forall a€ R and b(>0)e R
where e(t) = [ey, €9, €3]

It is clear that (4) is independent of unknown uncertain parameter b, if b > 0
Therefore the synchronization of two Newton-Leipnik systems are achieved
under the controller (7) and a parameter estimation and update law equation

(8).

5 Adaptive Synchronization of Newton-Leipnik
System with all Parameters Estimation

Let the unknown uncertain parameter b > 0 is cancelled, we take a
Lyapunov function V' (e, a, b)for equation (4)

V(e a,b) = teeT + L(a + 1)

where a = a — a, b=0b— I;, a and b are estimate values of the unknown
parameters a and b respectively.
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We have the time derivative V (e, @, b) along the solution of the equation (4)

V= —ae? — 0.4e5 4 10eieze3 + 151021 + Sejesy; + bes (10)
+equy + exts + ezuz — ad + aa — bb + bb

There are many possible choices for the controller U but we choose as follows

uy = (d — 1)61
us = —(10e3 + 1521)ey
uz = —(5e1y1 + (b+ 1)es) (11)

and the parameter estimation update laws a and b.

a=el
b= e (12)
By the choice of the controller (11) the error dynamical system becomes
€ = —er+(a—a)er +ex+ 10(eses + a2 + e3yr)
62 = —e1 — 0.462 — 5(6163 + 26121 - 63371)
€3 = —e3+ (b—b)es —b(eres + eawy + 2e1y1) (13)

Under this choice we have
V= —e? —0.4e2 — €2
This leads to

limi . || e(t) [|[=0 forall a€ R and be R
where e(t) = [ey, €2, e3]”

Therefore the synchronization of two Newton-Leipnik systems are achieved
under the controller (11) and a parameter estimation and update law equation
(12).

6 Results and Discussions

Fourth order Runge-Kutta method is used to solve the systems of differen-
tial equations (2), (3) and (4). Time step of size .001 is employed. The initial
states of the drive system are taken as z1(0) = —5, y1(0) = 8 and 2,(0) = 10
and the initial states of the response system are z3(0) = 40, y2(0) = —4
and 22(0) = —5. Hence the error system has the initial values e;(0) = 45,
e2(0) = —12 and e3(0) = —15. The parameters are chosen to be a = 0.4 and
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Figure 3: Fig.3(a). Time evolution of z; and z, states, Fig.3(b). Time evo-
lution of y; and y, states, Fig.3(c). Time evolution of z; and zy states and
Fig.3(d). Display the error systems tends to zero when the control functions

are activated with the parameter estimation update laws a = —e? and b = e2.
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Figure 4: Estimated value of the unknown parameters a and b.
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b = 0.175 in all simulations so that the Newton-Leipnik system exhibits the
chaotic behavior (Fig.1(a)). In this paper we discuss adaptive synchronization
scheme between two coupled chaotic Newton-Leipnik systems. Lyapunov di-
rect method is used to prove the stability of the synchronized state. Secure
communication utilizing the synchronization of chaos has been an intersting
issue in recent years. Adaptive synchronization of Newton-Leipnik system can
also be used for chaotic masking, chaotic modulation and chaotic shift. Nu-
merical results are presented to show the effectiveness of the proposed scheme.
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