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Abstract

In this paper we will introduce three families of asymmetric maps, and discuss some dynamical properties for these
families in the deterministic case, and noisy case. New mixed noisy chaotic map will be suggested and then studied with
some details.
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1. Basic concepts

Let (Q,F,P) denoted a probability space , and let (9%),ez+ : Q — Q be an invertible map such that 9* and 9~ are
measurable , 9P = P, 9° = idg, 9™ = 9"09™ , and all B € F with 9~1(B) = B then P(B) € {0,1}, we will define
the ergodic process &, (w) = E(¥™(w)) , n € Z* , where &: Q — R is measurable function.

Definition 1.1: (random dynamical system — discrete time) [1].
Let (O, F,P) denoted a probability space then the random dynamical system is define as a random difference equation
xe41(@) = 0(t, %0, & (W) = 9(1,x,, & (w)) , where t € Z* : Z* x RX Q > R and &,(w) defined above. Such that

i) (P(O’xo "fo(w)) = xo(w)
ii) p(n+m,x;, &) = @(n, X, Em(@)) 0 9(m, xy, & (w))

Definition 1.2: (random fixed point) [6].

A random fixed point p(w) of a random dynamical system ¢ on R is a random variable p(w) : Q — R such that.
Almost surely (a.s.) p(w) = (p(l ,p(a)),fo(w))

The random fixed point p(w) is attracting with probability B.(p(w) is attracting) = P if B.(lim . |x; (@) —
p(w)| =0) =P, forall xo(w) € (p(w) — ¢, p(w) + ) forsame e > 0

If P =1(i.e. limy,,|x;(w) —p(w)| =0 a.s.)then p(w) is called globally attracting [6].

Lemma 1.1: let p(w) be a random fixed point to the random dynamical system ¢ on R, and ¢ partial differentiable at
p(w) then

P.(p(w) is attracting) = B. (

dp(t .x‘ft(w))| < 1)

op(w)
Proof:
ot x §t(w)) x1(w)-p(w) _
Let |—0p(w) | < 1 then —XO(w)_p(w)| <A for same 0 <A <1 and samee > 0. and any x,(w) € (p(w) — ¢,
p(w) + &) then we have [x; (w) — p(w)] < Alxq(w) — p(w)| . by mathematical induction we get |x,(w) — p(w)] <
Atlxy(w) — p(w)] and hence limg_ o |x: (@) —p(w)| =0 , which implies to

> (|6<P(t,x Se(w))

20(@) | < 1) = P.(lim;, o |x: (@) — p(w)| = 0) = B.(p(w) is attracter) .
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2. Some dynamical properties in deterministic case

2.1. The family of asymmetric tent map

The dynamical system for the asymmetric tent map can be defined as follows:

= if 0<x,<a
Xeg1 = Ta,u(xt) = 1-xt if a <x, <1
1-a t=

Where T, ,:[0,1] - [0,1] and0<pu<1,0<a<1.
Theorem 2.1: For a dynamical system in (1).
1) If u < athen the system has one attracting fixed point p = 0.

63
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2) If u = athen all points of the interval [0, a] represent fixed point to the system and all points from the interval

(a, 1] represent eventually fixed points and it is orbit have only two points .
3) Ifa <u < 1-— athen the system has two fixed points p; = 0 replying and p, =

u

m attractlng.

4) Ifu>aandpu>1—athen there are no any attracting fixed or periodic point and the system becomes chaotic,

see Lyapunov exponent figure (1).
Proof: Clear.

The satisfaction of the above properties can be seen from the bifurcation diagrams in figure (2)
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Fig. 1: Lyapunov exponent of asymmetric tent map , x_ axes represent the values of pand y_axes represent the values of Lyapunov exponent ,
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Fig. 2: bifurcation diagram of asymmetric tent map family , x-axes represent the values of | and y-axes represent the values of x.1 where X.+1€[0,1]
,(@a=01,b)a=02,(c)a=03 (da=04,€)a=05,fa=06 ,)a=0.7,(h)a=0.38

2.2. The family of asymmetric logistic map

The dynamical system for asymmetric logistic map can be defined as follows:

Xt Xt
Xir1 = Gg u(xt) = {'“ 2 (1 +12—0£a xe+1-2a
| nESOA-EE  if a<x <1
Where G,,:[0,1] - [0,1]and0<a <1, 0<u<4.
Theorem 2.2: For a dynamical system in (2)
1) If u < 2a then the system has on attracting fixed pointp =0 .

if 0<x,<a

O]

a2

2)  If 2a < u < 4a then the system has two fixed points p, = 0 is replying and p, = 22=*% js attracting and

pu,pz € [0,a].
3) If2a<pu<2a+./4a+ 3(2 — 2a)? then the second fixed point

2 2 2 ra(u2—2ap?)
e e N
Dy = T is attracting and p, € [0,1] .
(2-2a)?
Proof: Clear.
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Fig. 3: Lyapunov exponent of asymmetric logistic map , x_ axes represent the values
@a=02,b)a=04,(c)a=0.5,() a=0.7.
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of pand y_ axes represent the values of Lyapunov exponent ,
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Fig. 4: bifurcation diagram of asymmetric logistic map family , x-axes represent the values of 1 and y-axes represent the values of X1 with x1€[0,1]
,@a=01,b)a=02 ,(c)a=03 ,(da=04,()a=05,fa=06 ,g9a=0.7,()a=0.8.

2.3. The family of mixed logistic-tent map

The dynamical system for the mixed logistic-tent map can be defined as follows:
Xt Xt .
ﬂ;(l—z) lf OSxtSa
Xt+1 = TGa,p.(xt) = 1-x; . (3)
(4(1_a)) if a <x<1
Where TG, ,:[0,1] » [0,1]]and 0<a <1, 0<pu<4.

Theorem 2.3: For a dynamical system in (3)
1)  If u < 2a then the system has one attracting fixed pointp = 0.
_An2
2) If 2a < u < 4a then the system has two fixed points p, = 0 is replying and p, = % is attracting, and
p1,p2 €[0,a].
3)  If u = 4a then the second fixed point p, = a is attracting.

4) If 4a<pu<4(1—a)thenp, = ﬁ is attracting , and p, replying if 4 > max{4a,a(1 — a)}.



66 International Journal of Basic and Applied Sciences

Proof:
—4q? 2_
The proofs of (1), (2) and (4) are clear. To prove (3), p, = ~2£=2%° = 8a4a4a
To show that p, is attracter we must find open interval | = (p, —€,p, +€) , € > 0, such that for any x, € J then the
orbit {x.} - p, , where {x,} the orbit of x, .
Claim : J = (0,1) : At first let x, € (0,a) since GT, 44(x;) < GTy4q(a) = a , for every x, € (0,a) , then {x;}
4a

bounded from above and a represent sup({x,}) , and since GT', 4, (x;) = a (1 - g) > 0 for every x; € (0,a) then {x,}

increasing , that implies {x;} converge to a. To complete the proof we need to show for any x, € (a, 1) then x; €
0,a) .
x1 = GTg4a(x0) = a(

t0<x, =a—2<aq.
1-a

1-x9p
1-a

11__x°) ,since0<a<xy<1lthen0<1-—xy<1-—a<0,and hence < 1 which implies

a
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Fig. 5: Lyapunov exponent of mixed logistic-tent map , x_ axes represent the values of pand y_ axes form value of Lyapunov exponent , (a)a =
02,(b)a=04,(c)a=0.5,(d) a=0.7.

Table 1: Some properties of the asymmetric tent , asymmetric logistic and mixed logistic-tent map

No. property map value of "a"
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of "pu" AL 3.3240 3.2000 3.0980 3.0270 3.0000 3.0330 3.1430 3.3430 3.6330
1 which Fixed point AT 0.9000 0.8000 0.7000 0.6000 0.5000 0.6000 0.7000 0.8000 0.9000
becomes unstable #""" 3.6000 3.2000 2.8000 2.4000 2.0000 2.4000 2.8000 3.2000 3.6000
Value of "u" A.L 3.8510 3.7400 3.6580 3.6020 3.5700 3.5660 3.5910 3.6570 3.7810
. H AT 0.9000 0.8000 0.7000 0.6000 0.5000 0.6000 0.7000 0.8000 0.9000
2  which Chaotic M
region begins . L-.T 3.6560 3.4370 3.3160 3.2680 3.2460 3.2520 3.3010 3.4180 3.6480
value of "u" A. L 3.9905 39645 3.9255 3.8786 3.8285 3.7819 3.7496 3.7490 3.8102
. He A. T 099 09688 0.9280 0.8748 0.8091 0.7294 0.7001 0.8002 0.9004
3 which cycle with M
period 3 appears . L-.T 3.9860 3.9340 3.8520 3.7520 3.6410 3.5282 3.4489 3.4670 3.6550
value of "u" AL 4 4 4 4 4 4 4 4 4
; H AT 1 1 1 1 1 1 1 1 1
4 which chaotic M
region ends . L-;r 4 4 4 4 4 4 4 4 4
Are there stable A L. Yes Yes Yes Yes Yes Yes Yes Yes Yes
. A. T. No No No No No No No No No
5 cyclesinthe M
chaotic region ? : Yes Yes Yes Yes Yes Yes Yes Yes Yes

.
_|
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Fig. 6: bifurcation diagram of mixed logistic-tent map family , x-axes represent the values of p and y-axes represent the values of X1 with x1€[0,1]
,@a=01,(0b)a=02,()a=03 ,da=04,()a=05,(fa=06 ,9 a=0.7,(h)a=0.8

3. Some dynamical properties in noisy case

All maps treated with in previous section were defined on closed interval [0, 1], but in the noisy case it is not true
generally.

3.1. The family of noisy asymmetric tent map.

The noisy dynamical system for asymmetric tent map with additive noise is given by.

_ uE 4§ (w) if 0<x, <a
Tern(@) = Tap G Ge(@)) = /Jll__);t + §i(w) if a <x, <1 @)

WhereT, :RxQ = R, {&(w)} is a sequence of independent identically distributed (iid) random variables and
0<a<1,05u<1
Theorem 3.1: For the dynamical system (4), where &.(w) ~ Gauss(0,02) ,
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1)  If u < athen the system has one random fixed point p(w)~ Gauss(0,02), and P.(p(w) is attracting) =
P.(¢((w) <a),ifu>1—a,and B.(p(w) is attracting) = 1ifu<1l—a

2)  If u = athen there are infinite number of random fixed points p(w)~ Gauss(p*,o2) , p* € [0,a] .

3) If a<u<1l-—a then the system has two random fixed points p,(w)~ Gauss(0,0%) and

P2 (w) ~ Gauss(lH(1 P ,02) , where P.(p;(w) is attracting ) = B.(¢$(w) > a) and
P.(p,(w) is attracting ) = P. (f(w) >a— u+(!1l—a)) .

4)  Ifu>aandyu > 1—athen for any random fixed (periodic) point p(w) , B-(p(w) is attracting) = 0, and the
system become noisy chaotic.

Proof: The proofs of (1), (2) and (3) are clear.
u .
0Tq u(xt 5t(w))| { a if x; <a

To prove (4), since |
0x é if x; >a

Then by lemma 1 any random fixed (periodic) point p(w) is attracter with probability 0.
To show that the system is noisy chaotic we will calculate stochastic Lyapunov exponent (SLE) as follows.

A5(x) = lim,, e, ~ 273 log () £(@)

0xg
And since M| > 1 then A,(x,) > 0 and the system is noisy chaotic.
Example 3.1: Let &, (w) ~ Gauss(0,0.0025) , for system (4)
Case 1: let u=0.5,a=0.6 then by theorem (3.1)-part 1, the system has one random fixed point
p(w)~Gauss(0,0.0025) and P.(p(w)is attracting) = PB.(((w)<0.6)=P(z(w)<12)=1 , where
z(w)~Gauss(0,1) , and the SLE of the system is about A; = —0.1822 .
Case 2: let u = a = 0.7 then by theorem (3.1)-part 2 , then the system has infinity number of random fixed points
p(w) ~Gauss(p*,0.0025) , for all points p* € [0, a] , and the SLE of the system is about 1, = —4.0547 x 1075 .
Case 3. let u=0.5, a=04 then by theorem (3.1)-part 3, the system has two random fixed points
p1(w)~Gauss(0,0.0025), p,~Gauss(0.4545,0.0025) , and P.(p,(w) isattracting) = PB.(¢(w) > 04) =
P.(z(w) >8) =0 , B.(py(w)is attracting) = B.(§(w) > —0.0545) = P.(z(w) > —1.09) = 0.86214 , and the
SLE of the system is about 1, = —0.1822 .
Case 4: let =0.7,a = 0.4, then by theorem (3.1)-part 4, all fixed or periodic points in the system are replying with
probability 1, and the SLE of the system is about A, = 0.2691 .
Not that Stochastic Lyapunov exponent of the system (4) and deterministic Lyapunov exponent of the system (1) are the
same, because of the partial derivative of system (4) is not dependent on x;(w) . The satisfaction of the above
properties can be seen from the bifurcation diagrams figure (7) .
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Fig. 7: bifurcation diagram of noisy asymmetric tent map family with additive noise Gauss (0, 0.0025) , x-axes represent the values of p and y-axes
represent the values of Xu1w), (@) a =0.1,(b)a=0.2 ,(c)a=03 ,(d)a=04 ,()a=05,Fa=06,(ga=07()a=08.

3.5. The family of noisy asymmetric logistic map.

The noisy dynamical system for asymmetric logistic map with additive noise is given by.
nE(1-2) + g(w) ifo<x, <a

~ 2a
Xep1(@) = Gg (e, §e(w)) = _ _
o e n(2=2) (1 - (xf_lz,fa» +&(w) ifa<x <1
Where G'a,“: RXxQ - R, {&(w)}isasequence of iid random variablesand 0 < a <1, 0<u<4.

Theorem 3.2: For the dynamical system (5), where &.(w) ~ Gauss(0,0?) .

1)  Ifu < 2a, then the system has one random fixed point p; (w)~ Gauss(0,02), and P.(p,(w) is attracting) =

PT(E(a))<a)*Pr(a—¥<p1(w)<a+¥)+Pr(E(w)>a)*Pr(a—M<p1(w)<a+@).

(5)

a2
2) If 2a<pu<4a then the system has another random fixed point pz(a})~Gauss(%,az) ,

where P.(p;(w)is attracting) = B. (f(a)) <a-— #) * P, (a — % <p(w) <a+ %) + B (f(w) >

_ 2ap—4a® _(2—2a)? (2-2a)?
a-—— )*Pr(a Y <p2(w)<a+—u )
3)  If 4a < u then the second random fixed point
2ap 2au 2 ra(p2-2au?)
((Z—Za)2 1)_j((2—2a)2 1) +( (2—2a)% )
p, (W) ~ Gauss T ,a
(2-2a)2

2

Is attracting with probability

2au 2ap 2 ra(u2-2au?)
. . ((Z—Za)z 1)_j((2—2a)2 1) +( (2-2a)* ) 2a2
P.(p,(w) is attracting ) = B | §é(w) < a— T * P, (a - <p(w) <a+

(2-2a)2

_ 2, (M?—2an?) \
%) +P| §(w)>a— ) \[(@Z%; e ) * By (a - _(Z_ia)—z <p(w)<a+ —(Z_ia)z) :

(2-2a)?

Proof: Clear, by definition 1.2 and lemma 1.1.
Example 3.2: Let ¢, (w) ~ Gauss(0,0.0025) , for system (4)
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Case 1: let=1,a = 0.6, by theorem (3.2)-part 1, the system has one random fixed point p; (w)~Gauss(0,0.0025) ,
and it is attracting with probability B.(p(w)is attracting) = B.(§(w) < 0.6) * B.(—0.12 < p,(w) < 1.32) +
P.(¢(w) > 0.6) * P.(—0.04 < p;(w) < 1.24) = B.(z(w) < 12) * B.(—2.4 < z(w) < 26.4) + P.(z(w) > 12) *
P.(—0.8 < z(w) < 24.8) = 0.9918 , where z(w)~Gauss(0,1) , and the SLE of system is about

A, = —0.1863 .

Case 2 : letu = 2,a = 0.6 by theorem (3.2)-part 2, the system has two random fixed point p; (w)~Gauss(0,0.0025)
, P2(w)~Gauss(0.48,0.0025) , and P.(p,(w) is attracting) = P.(§(w) < 0.6) * B.(0.24 < p,(w) < 0.96) +
B.(¢§(w) > 0.6) * P.(0.28 < p; (w) < 0.92) = P.(z(w) < 12) * B.(4.8 < z(w) < 19.2) + B.(((w) > 12) *

P.(5.6 <z(w)<184)=0 , P.(p;(w)is attracting) = P.(§(w) < 0.12) * P.(0.24 < p,(w) < 0.96) +
P.(¢(w) > 0.12) * B.(0.28 < p,(w) < 0.92) = B.(z(w) < 2.4) * B.(—4.8 < z(w) < 9.6) + P.(z(w) > 2.4) *

P.(—4 < p,(w) < 8.8) = 1, where z(w)~Gauss(0,1) and the SLE of the system is about A, = —1.2356 .

Case 3: let =2.5,a = 0.6, by theorem (3.2)-part 3 , the second fixed point p,(w)~Gauss(0.624,0.0025) , and
B.(p;(w) is attracting ) = B.(¢§(w) < —0.024) * P.(0.312 < p,(w) < 0.888) + P.(¢é(w) > —0.024) *

P.(0.344 < p,(w) < 0.856) = P.(z(w) < —0.48) * P.(—6.24 < z(w) < 5.28) + P.(z(w) > —0.48) * B.(=5.6 <
z(w) < 4.64) = 1, where z(w)~Gauss(0,1) , and the SLE of the system is about 1, = —1.7190 .

In this example the approximate value of u,. = 3.523 .
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Fig. 8: S.L.E. for noisy asymmetric logistic map with additive Gauss (0, 0.0025) noise , x_ axes represent the values of pand y_axes represent
the valuesof S.L.E.,(@a=2,(b)a=04,(c)a=0.6,(d)a=0.8.

The satisfaction of the above properties can be seen from the bifurcation diagrams figure (9).
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(@) (h)

Fig. 9: bifurcation diagram of noisy asymmetric logistic map family with additive noise Gauss (0 , 0.0025) , x-axes represent the values of p and y-
axes represent the values of xu(w) (@) a=0.1,{0)a=0.2 ,(c)a=03 (da=04,€)a=05,fa=06 ,0a=07,ha=08.

3.3. The family of noisy mixed logistic-tent map.

The noisy dynamical system for mixed logistic-tent map with additive noise is given by:

- pE(1-2) + & () if0<x.<a
Xesr (W) = GTa,u(xt 'ft(w)) = ¢ 1_xta . < (6)
(4(1_a)) + & (w) ifa<x, <1

Where E‘Ta,u: RXxQ - R, {&(w)}sequence of (iid) random variablesand 0 < a <1, 0<u<4

Theorem 3.3: For the dynamical system (6), if &,(w) ~ Gauss(0,02) .
1)  Ifu < 2a, then the system has one random fixed point p;(w)~ Gauss(0,52), and P.(p,(w) is attracting) =

Fe@) <a)xh (a _2%2 <m@<a +2;;L2) +h¢(w)>a), if<4(1—a), and if u>4(1—a) then
P.(p1(w) is attracting) = P.(§(w) < a) * P, (a — % <p (@) <a+ %) .

2) If 2a <p < 4a then the system has another random fixed points p,(w) ~ Gauss (# ’02) . and
Ppa() is attracting) = B (§() < a = 225) « (e 25 < py() <@+ 25) + B (§@) > a-
#) ,ifu<4(l—a)and if u >4(1 —a), then B.(p,(w) is attracting ) = (f(w) <a— 2auu4a ) .

2a? 2a?
Pr(a—7<p2(w)<a+7).

u
u+4(1-a) ’

3) If 4a < pu<4(1—a)then the second random fixed point p,(w) ~ Gauss( 02) is attracting with

- . , 2a? 2a?
probability P.(p,(w) is attracting ) = (f(w) <a-— m) P. (a - <p,(w)<a+ T) +
2
(E(w) >a-— proTE a)) and B.(p,(w) is attracting ) = B, (f(w) <a- —#Hﬁ_a)) * P, (a - % < py(w) <
a-+ T) if u > max{4a,4(1 —a)}.
Proof: The proofs of (1) and (3) is in the similar way of (2)
To prove (2), let p,(@) = GTa(p,§(@)) = u (1= L) +§(@) = 22+ £(w) , since
2a < p < 4a Impliesp, (w)~ Gauss (# ,02).

Now to find probability of p,(w) is attracter

B.(p,(w) is attracting ) = P.(p,(w) < a) * B-(p,(w) is attracting | p,(w) < a) + B-(p,(w) > a) *
B.(p;(w) is attracting | p,(w) > a)

We know that if 4 < 4(1 — a) then B.(p,(w) is attracting | p,(w) >a) =1

Thenif u <4(1—a)
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P.(p,(w) is attracting) = P. (f(w) <a _T) * P, (a —% <p(w)<a +%) + P (E(w) > a-—

L”_‘mz) , by lemma 1 and if 4 > 4(1 — a) B.(p,(w) is attracting | p,(w) > a) = 0 and hence

—4q? 2 2
B.(p;(w) is attracting )=P. (E((u) <a-— %) * P, (a - 2% <p(w) <a+ 2%)

Example 3.3: Let &, (w) ~ Gauss(0,0.0025) , for system (6)

Case 1:let=1,a = 0.6, by theorem (3.3)-part 1, the system has on random fixed point p(w)~Gauss(0,0.0025) , and
it is afttracting with probability PB.(p(w)is attracting) = PB.(§(w) < 0.6) * B.(—0.12 < p;(w) < 1.32) +
B.(¢(w) > a) =B(z(w) <12) * B.(—24 < z(w) < 26.4) + P.(z(w) > 12) = 0.9918 , where z(w)~Gauss(0,1)
and the SLE of system is about A, = —0.1869 .

Case 2: let u=2,a=0.6 by theorem (3.3)-part 2, the system has another random fixed point
p2(w)~Gauss(0.48,0.0025) , and B.(p,(w)is attracting) = P.(§(w) < 0.12) * B.(0.24 < p,(w) < 0.96) =
P.(z(w) < 2.4) * B.(—4.8 < z(w) < 9.6) = 0.9918 , where z(w)~Gauss(0,1) and the SLE of the system is about
A = —1.2148.

Case 3: let =25,a=06 , by theorem (3.3)-part 3 in above the second random fixed point
p2(w)~Gauss(0.6098,0.0025) , and B.(p,(w)is attracting) = B.(§(w) < —0.0098) * B.(0.312 < p,(w) <
0.888) = B.(z(w) < —0.196) * P.(—5.956 < z(w) < 5.564) = 0.422695 , and the SLE of the system is about
As = —0.9515 .

In this example the approximate value of u,,. = 3.1836 .

The satisfaction of the above properties can be seen from the bifurcation diagrams figure (11).
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Fig. 10: SLE for noisy mixed logistic-tent map with additive Gauss (0 , 0.0025) noise , x_ axes represent the values of value of g and y_axes
represent the values value of S.L.EE.,(@a=2,(b)a=04,(c)a=0.6,(d)a=0.8.
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(9) (h)

Fig. 11: bifurcation diagram of noisy mixed logistic-tent map family with additive noise Gauss (0 , 0.0025) , x-axes represent the values of p and y-
axes represent the values of xs1(w) , (@) a=0.1,(b)a=0.2 ,(c)a=03 ,d)a=04,(€)a=05,fa=06,Qa=07,Hha=08.
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