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Abstract

We have proposed a three species food chain model with additional

food to predators. We have studied the dynamics of this predator-prey

model with seasonally varying additional food to predators. Bifurca-

tion analysis of the proposed model is done with respect to quality

and quantity of additional food, amplitude of oscillation and angular

frequency of oscillations. The bifurcation analysis of our model plays a

vital role of seasonality parameters in the controllability of the predator-

prey system. Our analysis predicts that seasonality parameters are very

important to determine the quality and quantity of additional food for

controlling the dynamics of a real food chain model.
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1 Introduction

The study of ecological systems subject to seasonal variation is important
for both theoretical and experimental ecologists. Most of the models are as-
sumed with constant environment. The constant environment assumption is
rarely the case in real life. It is natural to identify the functional role that
seasons play on the behavior of population communities and to understand
the relationship between the magnitude of the seasonal variations and the
complexity of the ecosystem. There were several studies which investigated
the interactions between seasonality and internal biological rhythms of simple
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predator-prey systems [1-3]. These studies show that seasonality has impotant
consequences, such as the existence of multiple attractors, catastrophes and
chaos. Some studies [4, 5] suggest that chaos should serve as a representation
of how real world ecosystems evolve. However, efforts by field ecologists [6]
to observe chaos in natural systems have brought negative results. In these
studies, the effects of seasonal variation of critical parameters on the dynam-
ical behavior of the systems were investigated. But, the control of chaotic
behaviour using seasonal variation in critical parameters of the systems was
not examined.

Hastings and Powell (HP) [7] proposed a chaotic tri-trophic food chain
model with Holling type-II functional response. After the work of HP [7],
many researchers explored their model by including various ecological factors to
obtain regular behaviour from the system. In this paper, we introduce a three
species predator-prey model with additional (alternative) food to predators.
These additional food is assumed to be either non-reproducing prey or some
food source. Many experimentalists and theoreticians investigated the effects
of supplying alternative food to predators in a predator-prey system [8-13].
Srinivasu et al. [14], observed that, for a chosen quality and quantity of the
additional food the asymptotic state of a solution of the system can either be an
equilibrium or a limit cycle. Sahoo [15] applied the concept of additional food
on a predator-prey model with different growth rates and different functional
response for showing stabilize effects on the system. Recently, Sahoo [16]
reported that for biological conservation, additional food plays an important
role for servival of consumer species in an ecosystem.

In this paper, we have studied a predator-prey system with additional
food for predators considering seasonal variation of quality of additional food.
We have analysed the behaviour of the proposed model through bifurcation
analysis. We have done bifurcation analysis of our model with respect to
quality and quantity of additional food, amplitude of oscillations and angular
frequency of oscillations of quality of additional food.

2 Model Formulation

The famous HP [7] model with pairwise interactions between three species,
namely, X, Y , Z, which incorporates a Holling type-II functional interactions
in both consumer species is the following
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Here X are the numbers of species at lowest level of the food chain, Y the
size of the species that preys upon X and Z the size of the species that preys
upon Y . Here T is time. The constant R0 is the “intrinsic growth rate”and the
constant K0 is the “carrying capacity”of the species X. The constant C−1

1 and
C2 are conversion rates of prey to predators for species Y and Z respectively;
D1 and D2 are constant death rates for species Y and Z respectively. The con-
stants Ai and Bi for i = 1, 2 are maximal predation rate and half saturation
constants for Y and Z respectively.

If h1 and e1, e2 are constants representing handling time of the predators
Y , Z per prey item and ability of the predators to detect the prey. Then
Ai and Bi, represent the maximum predation rate and half saturation values
of the predators Y , Z, to be 1/h1 and 1/e1h1, 1/e2h1 respectively. Hastings
and Powell [7] demonstrated that chaos is possible for a simple biologically
reasonable, continuous-time, three species food chain model in certain region
of parametric space.

Now, we modify the model (1) by introducing “additional food”to predators
population. We make the following assumptions:

(a) Predators are provided with additional food of constant biomass A
which is distributed uniformly in the habitat.
(b) The number of encounters per predator with the additional food is propor-
tional to the density of the additional food.
(c) The proportionality constant characterizes the ability of the predator to
identify the additional food.
(d)The handaling time of the both predators per unit quantity of additional
food are same.

With the above assumptions, HP model (1) takes the following form:
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If h2 represents the handaling time of both the predators Y , Z per unit
quantity of additional food and e3, e4 respectively represent the ability for
the predators Y , Z to detect the additional food, then we have µ = e3/e1,
ν = e4/e2 and α = h2/h1. The terms µA and νA represent effectual additional
food for the predators Y and Z respectively.

We nondimensionalize the system (2) with x = X
K0

, y = Y
K0

, z = Z
K0

,
t = R0T and obtain the following system

dx

dt
= x(1 − x) −

a1x

1 + αξ + b1x
y

dy

dt
=

β(x + cξ)

1 + αξ + b1x
y −

a2y

1 + αη + b2y
z − d1y (3)

dz

dt
=

γ(y + eη)

1 + αη + b2y
z − d2z

where
a1 = C1A1K0

R0B1

, a2 = A2K0

B2R0

, b1 = K0

B1

, b2 = K0

B2

, β = A1K0

B1R0

, γ = C2A2K0

R0B2

, c = B1

K0

,

e = B2

K0

, ξ = µA
B1

, η = νA
B2

, d1 = D1

R0

, d2 = D2

R0

.

Here α represents the “quality”of the additional food ( ratio between
predator’s handling time towards additional food and prey item) and ξ, η rep-
resent the “quantity”of the additional food for the intermediate predators and
top-predators respectively. The parameters α, ξ and η are the paramaters
which characterize the additional food.

Most natural environments are variable, and in response, birth rates,
death rates, and other vital parameters vary greatly in time. Therefore, a
constant supply of additional food to predators in a system is not relistic in
ecology. When the environmental fluctuation is taken into account, a model
must be more difficult to analyze in general. So, due to seasonal variation,
the supply of additional food to predators must be variable. Here, we assume
that the quantity of additional food ξ and η are varied periodically for seasonal
reason. We use ξ = ξ0(1 + δcos(ω1t)) and η = η0(1 + δcos(ω2t)), where ξ0 and
η0 are constants. Here δ is the amplitude of oscillations and ω1, ω2 are the
angular frequency of oscillations of ξ and η respectively. Therefore, with above
assumption, the model (3) becomes

dx

dt
= x(1 − x) −

a1x

1 + αξ0(1 + δcos(ω1t)) + b1x
y

dy

dt
=

β(x + cξ0(1 + δcos(ω1t)))

1 + αξ0(1 + δcos(ω1t)) + b1x
y −

a2y

1 + αη0(1 + δcos(ω2t)) + b2y
z − d1y

dz

dt
=

γ(y + eη0(1 + δcos(ω2t)))

1 + αη0(1 + δcos(ω2t)) + b2y
z − d2z (4)
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Figure 1: Bifurcation diagram of prey population with respect to (a) quality
of additional food α ∈ [0, 9]; (b) quantity of additional food ξ ∈ [0, 0.154]; (c)
quantity of additional food η ∈ [0, 0.2]; (d) amplitude of oscillations δ ∈ [0, 1]
of the system (4).

Now, we shall analyze the dynamics of the system (4) under the vari-
ation of quality and quantity of additional food, amplitude and frequency of
oscillations of quantity of additional food. The system (4) has to be analyzed
with the following initial conditions: x(0) > 0, y(0) > 0, z(0) > 0.

3 Bifurcation Analysis

We have done bifurcation analysis of the system (4) with the parameter
values a1 = 5.0, a2 = 0.1, b1 = 3, b2 = 2.0, c = 0.95, e = 0.85, β = 4.6,
γ = 0.08, d1 = 0.4, d2 = 0.01, ω1 = 2, ω2 = 1.2 which remains unchanged
throughout simulations. The remaining parameters α (quality of additional
food), ξ and η (quantity of additional food), δ (amplitude of oscillations) are
varying.

3.1 Bifurcation analysis of the prey population

Bifurcation diagrams of prey population with respect to quality of
additional food α, quantity of additional food ξ, quantity of additional food
η, amplitude of oscillations δ are shown in figure 1. Figure 1(a) is the bifur-
cation diagram of the prey population with respect to quality of additional
food α taking fixed ξ = 0.05, η = 0.05, δ = 0.02. Figure 1(a) shows that
the system has chaotic attractor without additional food α. With the increase
of quality of additional food the system dynamics becomes periodic and after
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Figure 2: Bifurcation diagram of intermediate predator with respect to (a)
quality of additional food α ∈ [0, 9]; (b) quantity of additional food ξ ∈

[0, 0.154]; (c) quantity of additional food η ∈ [0, 0.2]; (d) amplitude of os-
cillations δ ∈ [0, 1] of the system (4).

α ≥ 7.8, it reaches the steady state. Figure 1(b) is the bifurcation diagram
of the prey population with respect to quantity of additional food ξ taking
α = 2.0, η = 0.05, δ = 0.02 fixed. Figure 1(b) shows that the system (4)
has period-3 behaviour within 0 ≤ ξ ≤ 0.015. After ξ > 0.02 it has high
periodic oscillations and goes to chaotic region for 0.048 < ξ < 0.14. Within
0.14 < ξ < 1.5, it shows limit cycle behaviour. Therefore a period-doubling
casecade is observed in figure 1(b). Bifurcation diagram of the prey popula-
tion with respect to quantity of additional food η taking fixed α = 2, ξ = 0.05,
δ = 0.02 is shown in figure 1(c). From figure 1(c) it is clear that the system has
limit cycle oscillations for 0 ≤ η ≤ 0.02. But, in between 0.02 ≤ η ≤ 0.04 ei-
ther periodic oscillations or chaotic bands are occuring. Finaly, the system (4)
settles down to period-3 cycle. Therefore a period-doubling cycle is shows in
figure 1(c). Figure 1(d) is the bifurcation diagram of the prey population with
respect to amplitude of oscillations δ taking fixed α = 2, ξ = 0.05, η = 0.05.
Figure 1(d) shows that the system has high periodic and chaotic bands within
0 ≤ δ ≤ 1. However, from these bifurcation diagrams, we have observed that
proper choice of parameters α, ξ, η and δ can control the system dynamics.

3.2 Bifurcation analysis of intermediate predator

The bifurcation diagrams of the intermediate predator with respect to
quality of additional food α, quantity of additional food ξ, quantity of addi-
tional food η, amplitude of oscillations δ are shown in figure 2. Figure 2(a) is
the bifurcation diagram of the intermediate predator with resprct to quality
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Figure 3: Bifurcation diagram of top-predator with respect to (a) quality of
additional food α ∈ [0, 9]; (b) quantity of additional food ξ ∈ [0, 0.154]; (c)
quantity of additional food η ∈ [0, 0.2]; (d) amplitude of oscillations δ ∈ [0, 1]
of the system (4).

of additional food α taking fixed ξ = 0.05, η = 0.05, δ = 0.02. Figure 2(a)
shows that the system has chaotic attractor without any quality of additional
food α. The system shows period-8, period-4, period-3, peiod-2, limit cycle
oscillations for increase strength of additional food α ≥ 2.0. But, after α ≥ 7.8
it settles down to steady state. Figure 2(b) is the bifurcation diagram of the
intermediate predator with resprct to quantity of additional food ξ taking fixed
α = 2, η = 0.05, δ = 0.02. From figure 2(b) we observe that the system (4)
has period-3 behaviour within 0 ≤ ξ ≤ 0.015. After ξ > 0.02 it has high
periodic oscillations and then goes to chaotic region for 0.048 < ξ < 0.14.
Within 0.14 < ξ < 1.5, it shows limit cycle behaviour. A period-doubling
behaviour is predicted in figure 2(b). Figure 2(c) is the bifurcation diagram of
the intermediate predator with respect to quantity of additional food η taking
fixed α = 2, ξ = 0.05, δ = 0.02. The diagram shows that system has limit
cycle oscillations within 0 ≤ η ≤ 0.02. But, in between 0.02 ≤ η ≤ 0.04
either periodic oscillations or chaotic bands are there. We observe period-3,
period-4, period-6 dynamical behaviour. At last it settles down to period-3
oscillation. Figure 2(d) is the bifurcation diagram of the intermediate predator
with resprct to amplitude of oscillations δ taking α = 2, ξ = 0.05, η = 0.05
fixed. Figure 2(d) shows that the system shows high periodic oscillations and
chaotic bands within 0 ≤ δ ≤ 1. Therefore from the bifurcation diagrams we
conclude that suitable choice of parameters α, ξ, η and δ are needed to control
the dynamics of the system.

3.3 Bifurcation analysis of top-predator
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The bifurcation diagrams of top-predator with respect to quality of
additional food α, quantity of additional food ξ, quantity of additional food η,
amplitude of oscillations δ are shown in figure 3. Figure 3(a) is the bifurcation
diagram of the top-predator with resprct to quality of additional food α taking
fixed ξ = 0.05, η = 0.05, δ = 0.02. Figure 3(a) shows that the system has
chaotic attractor without additional food α. When we increase of additional
food α after α ≥ 3.2, it has limit cycle oscillation and it settles down to steady
state from α ≥ 7.8. Figure 3(b) is the bifurcation diagram of the top-predator
with resprct to quantity of additional food ξ taking fixed α = 2, η = 0.05,
δ = 0.02. From figure 3(b) we observe that the system (4) has limit cycle os-
cillation within 0 ≤ ξ ≤ 0.015. After ξ > 0.02 it has more periodic oscillations
and goes to chaotic region for 0.048 < ξ < 0.14. Within 0.14 < ξ < 1.5, it
shows limit cycle behaviour. From figure 3(b) we observe that top-predator
has extinction risk for higher quantity of additional food ξ. Figure 3(c) is the
bifurcation diagram of the top-predator with respect to quantity of additional
food η taking fixed α = 2, ξ = 0.05, δ = 0.02. The diagram shows that
figure 3(c) has limit cycle oscillations within 0 ≤ η ≤ 0.02. But, in between
0.02 ≤ η ≤ 0.11 either periodic oscillations or chaotic bands are there. Lastly,
it settles down to limit cycle oscillation. Figure 3(d) is the bifurcation dia-
gram of the top-predator with resprct to amplitude of oscillations δ taking
fixed α = 2, ξ = 0.05, η = 0.05. Figure 3(d) shows that the system has high
periodic cycles and chaotic bands within 0 ≤ δ ≤ 1. Therefore we conclude
that proper choice of parameters are very important to control the dynamics
of the system.

3.4 Bifurcation analysis with respect to frequency of oscillations

In this section, we have analysed the bifurcation of prey population,
intermediate predator and top-predator with respect to frequency of oscilla-
tions ω2 of the system (4). Here, we take the ratio ω1

ω2

as rational as well
as irrational numbers. The figure 4, figure 5 are respectively the bifurcation
diagram of prey population, intermediate predator and top-predator with re-
spect to ω2 ∈ [0, 1.5] taking the ratio ω1

ω2

=Golden number=
√

5+1

2
. From the

figure 4, figure 5 we observe that the system (4) has chaotic attractor within
0 ≤ ω2 ≤ 0.45. After ω2 > 0.45, it shows high periodic cycles. Similar be-
haviour is obtained when the ratio ω1

ω2

is a rational number. Therefore, for
high frequency of oscillations of quantity of alternative food the system shows
periodic behaviour.
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Figure 4: Bifurcation diagram of prey population and intermediate predator
with respect to frequency of oscillation ω2 ∈ [0, 1.5], where ω1 =

√
5+1

2
ω2 keep-

ing fixed α = 2, ξ = 0.05, η = 0.05, δ = 0.02 of the system (4)
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Figure 5: Bifurcation diagram of top-predator with respect to frequency of
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ω2 keeping fixed α = 2, ξ = 0.05,

η = 0.05, δ = 0.02 of the system (4)
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4 Conclusions

We have proposed a three species predator-prey model with additional food
to predators. We assume the periodic variation of quantity of additional food.
The bifurcation analysis of proposed model is done with respect to quality of
additional food α, quantity of additional food ξ and η, amplitude of oscilla-
tions δ and angular frequency of oscillations separately. From the bifurcation
diagrams, we have observed that for suitable choice of parameters the system
dynamics can be controlled. Our analysis confirms that if quantity of addi-
tional food is season dependent, then system dynamics may not be controlled
through variation of quantity and quality of additional food. We can reach our
target state from the system with periodically varying quantity of additional
food only if we have knowledge of frequency as well as amplitude of oscilla-
tion of the quality of additional food. Therefore we conclude that together
with quality and quantity of additional food, the frequency and amplitude of
oscillation of quantity of additional food are key finding parameters to con-
trol the dynamics of a three species predator-prey system. Therefore for pest
managment and biological conservation consideration of seasonal variation of
quantity of additional food is urgently required.
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