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Abstract

The aim of this paper is to introduce a new class of sets called λpc- open sets and to investigate some of their
relationships and properties. Further, by using this set, the notion of λpc-Ti spaces ( i = 0,1/2, 1, 2 ) and λpc-Rj

spaces ( j = 0, 1 ) are introduced and some of their properties are investigated.
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1. Introduction

The study of pre-open sets and pre-continuity in topological spaces was initiated by Mashhour, El-Monsef and
El-Deeb [7]. Analogous to generalized closed sets which was introduced by Levine [8], Maki, Umehara and Nori
[2], introduced the concept of pre-generalized closed sets in topological spaces. Kasahara [6], defined the concept of
an operation on topological spaces and introduced the concept of closed graphs of a function. Ahmad and Hussain
[1], continued studying the properties of operations on topological spaces introduced by Kasahara [6]. Ogata [10],
introduced the concept of γ-Ti (i = 0,1/2,1,2) and characterized γ-Ti by the notion of γ- closed sets or γ-open sets.
Chattopadhyay [9] defined other new types of separation axioms and Caldas, Jafari and Nori [5], defined pre-R1,
and pre-R0 spaces.

In this paper, we introduce and study a new class of pre-open sets called λpc-open sets in topological spaces.
By using the notion of λpc-closed and λpc-open sets, we introduce the concept of λpc-Ti (i = 0, 1/2, 1, 2) and λpc-Rj

(j = 0, 1) spaces. several properties and characterizations of these spaces are obtained.

2. Preliminaries

Throughout, X denote a topological space with out any separation axiom. Let A be a subset of X, the closure
(interior) of A are denoted by Cl(A) (Int(A)) respectively. A subset A of a topological space (X, τ) is said to be
pre-open [7] if A ⊆ Int(Cl(A)). The complement of a pre-open set is said to be pre-closed [7]. The family of all
pre-open (resp. pre-closed) sets in a topological space (X, τ) is denoted by PO(X, τ) or PO(X) (resp. PC(X, τ)
or PC(X)).
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Definition 2.1 [4] Let (X, τ) be a topological space and let A be a subset of X then:

1. The pre-interior of A (pInt(A)) is the union of all pre-open sets of X contained in A.

2. A point x ∈ X is said to be a pre-limit point of A if every pre-open set containing x contains a point of A
different from x, and the set of all pre-limit points of A is called the pre-derived set of A denoted by pd(A).

3. The intersection of all pre-closed sets of X containing A is called the pre-closure of A and is denoted by
pCl(A).

Definition 2.2 [2] A subset A of a space (X, τ) is called a pre-generalized closed set (pg-closed), if A ⊆ U and U
is pre-open implies that pCl(A) ⊆ U .

Definition 2.3 A topological space (X, τ) is said to be:

1. pre-T0 [9] if for any distinct pair of points in X, there is an pre-open set containing one of the points but not
the other.

2. pre-T1 [9] if for any distinct pair of points x and y in X, there is a pre-open U in X containing x but not y
and a pre-open set V in X containing y but not x.

3. pre-T2 [9] if for any distinct pair of points x and y in X, there exist pre-open sets U and V in X containing
x and y, respectively, such that U ∩ V = φ.

4. pre-T1/2 [2] if every pg-closed set is pre-closed.

5. pre-R0 [5] if for each O ∈ PO(X) and x ∈ O, pCl({x}) ⊆ O.

6. pre-R1 [5] if for each pair x, y ∈ X such that pCl({x}) 6= pCl({y}), there exist disjoint pre-open sets U and
V such that pCl({x}) ⊆ U and pCl({y}) ⊆ V .

Definition 2.4 [10] Let (X, τ) be any topological space. A mapping λ : τ → P (X), (P (X) stands for all subsets of
X), is called an operation on τ if V ⊆ λ(V ) for each non-empty open set V and λ(φ) = φ.

Definition 2.5 [3] Let (X, τ) be a topological space and let A be a subset of X then:

1. The λ-interior of A (λInt(A)) is the union of all λ-open sets of X contained in A.

2. A point x ∈ X is said to be a λ-limit point of A if every λ-open set containing x contains a point of A different
from x, and the set of all λ-limit points of A is called the λ-derived set of A denoted by λd(A).

3. The intersection of all λ-closed sets of X containing A is called the λ-closure of A and is denoted by λCl(A).

3. λpc-Open sets

In this section, we introduce a new class of pre-open sets called λpc-open sets. Further, the notion of λpc-derived
set, λpc-closure and λpc-interior are introduced and their properties are discussed.

Definition 3.1 A mapping λ : PO(X) → P (X) is called an p-operation on PO(X) if V ⊆ λ(V ) for each non-empty
pre-open set V and λ(φ) = φ.

If λ : PO(X) → P (X) is any p-operation, then it is clear that λ(X) = X.

Definition 3.2 Let (X, τ) be a topological space and λ : PO(X) → P (X) be an p-operation defined on PO(X),
then a subset A of X is λp-open set if for each x ∈ A there exists a pre-open set U such that x ∈ U and λ(U) ⊆ A.

Definition 3.3 A λp-open subset A of X is called λpc-open if for each x ∈ A there exists a closed subset F of X
such that x ∈ F ⊆ A.

The complement of a λpc-open set is said to be λpc-closed. The family of all λpc-open ( resp., λpc-closed ) subsets
of a topological space (X, τ) is denoted by POλpc(X, τ) or POλpc(X)( resp., PCλpc(X, τ) or PCλpc(X) )

Proposition 3.4 For any topological space (X, τ), we have POλpc(X) ⊆ POλ(X) ⊆ PO(X).
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Proof. Obvious
The following examples show that the equality in the above proposition may not be true in general.

Example 3.5 Let X = {a, b, c}, and τ = {φ, {a}, {a, b}, X}. We define an p-operation λ : PO(X) → P (X) as
λ(A) = A if A = {a, c} or A is empty and λ(A) = X otherwise. Here, we have {a, c} is λp-open set but it is not
λpc-open.

The following examples shows that τ is incomparable with λpcO(X).

Example 3.6 Let X = {a, b, c}, and τ = {φ, {a}, {a, b}, X}. We define an p-operation λ : PO(X) → P (X) as
λ(A) = A if A 6= {a} or {b} and λ(A) = {a, b} if A = {a} or {b}. Now, we have {a} is open set but not λpc-open.

Example 3.7 Let N be a set of natural numbers. In a topological space (N, τ) with cofinite topology. We define
an p-operation λ : PO(N) → P (N) as λ(A) = A. Then we obtain that {1, 3, 5, ...} is λpc-open set but not open.

Proposition 3.8 Let {Aα}α ∈ I be any collection of λpc-open sets in a topological space (X, τ), then
⋃

α∈ I

Aα is a

λpc-open set.

Proof. Since Aα is λpc-open set for all α ∈ I, then Aα is a λp-open set for all α ∈ I. This implies that there exists a
pre-open set U such that λ(U) ⊆ Aα0 ⊆

⋃
α ∈ I

Aα. Therefore,
⋃

α∈I

Aα is a λp-open subset of (X, τ). Let x ∈ ⋃
α∈I

Aα,

then there exists an α0 ∈ I such that x ∈ Aα0. Since Aα is a λpc-open set for all α ∈ I, then there exists a closed
set F such that x ∈ F ⊆ Aα0 but Aα0 ⊆

⋃
α ∈ I

Aα, then x ∈ F ⊆ ⋃
α ∈ I

Aα. Hence,
⋃

α ∈ I

Aα is λpc-open.

The following example shows that the intersection of two λpc-open sets need not be λpc-open.

Example 3.9 Let X = {a, b, c} and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if A is
empty or A 6= {b} and λ(A) = X otherwise. So we have {a, b} and {b, c} are λpc-open sets but {a, b} ∩ {b, c} = {b}
is not λpc-open.

Proposition 3.10 The set A is λpc-open in the space (X, τ) if and only if for each x ∈ A there exists a λpc-open
set B such that x ∈ B ⊆ A.

Proof. Suppose that A is λpc-open in (X, τ). Then for each x ∈ A we put B = A is a λpc-open set such that
x ∈ B ⊆ A.
Conversely, Suppose that for each x ∈ A there exists a λpc-open set Bx such that x ∈ Bx ⊆ A. Thus A =

⋃
Bx,

where Bx ∈ POλpc(X) for each x. Therefore, by Proposition 3.8, A is λpc-open.

Definition 3.11 Let (X, τ) be a topological space. An p-operation λ is said to be p-regular if for every pre-open
sets U and V containing x ∈ X, there exists a pre-open set W containing x such that λ(W ) ⊆ λ(U) ∩ λ(V ).

Theorem 3.12 Let λ be an p-regular p-operation. If A and B are λpc-open sets in X, then A∩B is also λpc-open.

Proof. Let x ∈ A ∩ B, then x ∈ A and x ∈ B. Since A and B are λp-open sets, so there exist pre-open sets U
and V such that x ∈ U and λ(U) ⊆ A, x ∈ V and λ(V ) ⊆ B. Since λ is p-regular, this implies that there exists
a pre-open set W of x such that λ(W ) ⊆ λ(U) ∩ λ(V ) ⊆ A ∩ B. Therefore, A ∩ B is λp-open set. Again for each
x ∈ A ∩ B, we have x ∈ A and x ∈ B and since A and B areλpc-open sets, then there exist closed sets E, F such
that x ∈ E ⊆ A and x ∈ F ⊆ B. Therefore, x ∈ E ∩ F ⊆ A ∩ B. Since E ∩ F is closed, so by Definition 3.2, we
obtain that A ∩B is λpc-open.

Definition 3.13 Let (X, τ) be a topological space and let A be subset of X, then a point x ∈ X is called a λpc-limit
point of A if every λpc-open set containing x contains a point of A different from x.

The set of all λpc-limit points of A is called the λpc-derived set of A denoted by λpcd(A).

Definition 3.14 Let A be subset of the space (X, τ), then the λpc-closure of A (λpcCl(A)) is the intersection of all
λpc-closed sets containing A.

Here we introduce some properties of λpc-closure of the sets.

Proposition 3.15 For subsets A, B of a topological space (X, τ), the following statements are true.
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1. A ⊆ λpcCl(A).

2. λpcCl(A) is λpc-closed set in X.

3. λpcCl(A) is smallest λpc-closed set which contain A.

4. A is λpc-closed set if and only if A = λpcCl(A).

5. λpcCl(φ) = φ and λpcCl(X) = X.

6. If A ⊆ B. Then λpcCl(A) ⊆ λpcCl(B).

7. λpcCl(A) ∪ λpcCl(B) ⊆ λpcCl(A ∪B).

8. λpcCl(A ∩B) ⊆ λpcCl(A) ∩ λpcCl(B).

Proof. Obvious.
In general the equalities (7) and (8) of the above proposition is not true, as it is shown in the following examples:

Example 3.16 Let X = {a, b, c}, and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if
A = φ, A = {a, b} or {b, c} and λ(A) = X otherwise. Now, if A = {b} and B = {c}, then λpcCl(A) = {b} and
λpcCl(B) = {c}, but λpcCl(A ∪B) = X, where A ∪B = {b, c}. λpcCl(A ∪B) 6= λpcCl(A) ∪ λpcCl(B).

Example 3.17 Let X = {a, b, c}, τ = {φ, {a}, {c}, {a, c}, X}. We define an p-operation λ : PO(X) → P (X) as
λ(A) = A if A = φ or c ∈ A and λ(A) = Cl(A) otherwise. Now, if A = {a} and B = {b} then λpcCl(A) = {a, b}
and λpcCl(B) = {b}, but λpcCl(A ∩B) = φ, where A ∩B = φ. Hence λpcCl(A ∩B) 6= λpcCl(A) ∩ λpcCl(B).

Proposition 3.18 Let A be any subset of a space X, then λpcCl(A) = A ∪ λpcd(A).

Proof. Obvious.

Proposition 3.19 If A is a subset of (X, τ), then x ∈ λpcCl(A) if and only if V ∩A 6= φ for every λpc-open set V
containing x.

Proof. Let x ∈ λpcCl(A) and suppose that V ∩A = φ for some λpc-open set V which contains x. This implies that
X\V is λpc-closed and A ⊆ (X\V ), so λpcCl(A) ⊆ (X\V ). But this implies that x ∈ (X\V ) which is contradiction.
Therefore, V ∩A 6= φ.
Conversely, Let A ⊆ X and x ∈ X such that for each λpc-open set V containing x, V ∩ A 6= φ. If x /∈ λpcCl(A),
then there is a λpc-closed set S such that A ⊆ S and x /∈ S. Hence, (X\S) is a λpc-open set with x ∈ (X\S) and
thus (X\S) ∩A 6= φ which is a contradiction. Therefore, x ∈ λpcCl(A).

Proposition 3.20 If A is any subset of a topological space (X, τ), then pCl(A) ⊆ λpcCl(A).

Proof. Obvious.
The following example shows that the equality in the above proposition is not true in general.

Example 3.21 Let X = {a, b, c}, and τ = {φ, {a}, {a, b}, X}. We define an p-operation λ : PO(X) → P(X) as
λ(A) = A if A = φ or A = {a} and λ(A) = X otherwise. Now, if A = {c}, then pCl(A) = {c} and λpcCl(A) = X.

Definition 3.22 Let (X, τ) be a topological space and let A be subset of X, then the λpc-interior of A (λpcInt(A))
is the union of all λpc-open sets of X contained in A.

Proposition 3.23 For subsets A, B of a space X, the following statements hold.

1. λpcInt(A) is the union of all λpc-open sets which are contained in A.

2. λpcInt(A) is a λpc-open set in X.

3. λpcInt(A) ⊆ A.

4. λpcInt(A) is the largest λpc-open set contained in A.

5. A is λpc-open set if and only if λpcInt(A) = A.
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6. λpcInt(λpcInt(A)) = λpcInt(A).

7. If A ⊆ B, then λpcInt(A) ⊆ λpcInt(B).

8. λpcInt(φ) = φ and λpcInt(X) = X.

9. λpcInt(A) ∪ λpcInt(B) ⊆ λpcInt(A ∪B).

10. λpcInt(A ∩B) ⊆ λpcInt(A) ∩ λpcInt(B).

Proof. Obvious.
In general the equalities of (9) and (10) of the above proposition is not true, as it is shown in the following

examples:

Example 3.24 Let X = {a, b, c}, and τ = {φ, {a}, {b}, {a, b}, {a, c},X}. We define an p-operation λ : PO(X) →
P (X) as λ(A) = A if b ∈ A and λ(A) = Cl(A) if b /∈ A. Now, let A = {a} and B = {c}, then λpcInt(A) = φ, and
λpcInt(B) = φ, but λpcInt(A ∪B) = {a, c}. Thus λpcInt(A ∪B) 6= λpcInt(A) ∪ λcInt(B).

Example 3.25 Let X = {a, b, c}, and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if
A = φ, A = {c}, {a, b} or {a, c} and λ(A) = X otherwise. Now, if A = {a, b} and B = {a, c}, then λpcInt(A) =
{a, b} and λpcInt(B) = {a, c}, but λpcInt(A ∩B) = φ. Hence, λpcInt(A ∩B) 6= λpcInt(A) ∩ λpcInt(B).

Proposition 3.26 if A is a subset of a space X, then λpcInt(A) = A\λpcd(X\A).

Proof. Obvious.

Proposition 3.27 If A is any subset of a space X, then the following statements are true:

1. X\λpcInt(A) = λpcCl(X\A).

2. λpcCl(A) = X\λpcInt(X\A).

3. X\λpcCl(A) = λpcInt(X\A).

4. λpcInt(A) = X\λpcCl(X\A).

Proof. Obvious.

Proposition 3.28 If A is a subset of a topological space (X, τ), then λpcInt(A) ⊆ pInt(A).

Proof. Obvious.
The equality in the above proposition need not be true in general, as shown by the following example:

Example 3.29 Let X = {a, b, c}, and τ = {φ, {a}, {b}, {a, b}, X}. We define an p-operation λ : PO(X) → P (X)
as λ(A) = A if A is empty or A = {b} and λ(A) = X otherwise. Now, if A = {a, b}, then λpcInt(A) = φ and
pInt(A) = {a, b}.

Theorem 3.30 Let A, B be subsets of X. If the p-operation λ : PO(X) → P (X) is s-regular, then we have:

1. λpcCl(A ∪B) = λpcCl(A) ∪ λpcCl(B).

2. λpcInt(A ∩B) = λpcInt(A) ∩ λpcInt(B).

Proof. Obvious.
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4. λpc-Separation axioms

In this section, we define new types of separation axioms called λpc-Ti (i = 0, 1/2, 1, 2) and λpc-Rj (j = 0, 1) by
using the notion of λpc-open and λpc-closed sets. First, we begin with the following definition.

Definition 4.1 A subset A of (X, τ) is said to be generalized λpc-closed ( briefly g-λpc-closed) if λpcCl(A) ⊆ U,
whenever A ⊆ U and U is a λpc-open set in (X, τ).

We say that a subset B of X is generalized λpc-open (briefly. g-λpc-open) if its complement X\B is generalized
λpc-closed in (X, τ).

Theorem 4.2 If a subset A of X is g-λpc-closed and A ⊆ B ⊆ λpcCl(A), then B is a g-λpc-closed set in X.

Proof. Let A be g-λpc-closed set such that A ⊆ B ⊆ λpcCl(A). Let U be a λpc-open set of X such that B ⊆ U .
Since A is g-λpc-closed, we have λpcCl(A) ⊆ U . Now λpcCl(A) ⊆ λpcCl(B) ⊆ λpcCl(λpcCl(A)) = λpcCl(A) ⊆ U .
This implies that λpcCl(B) ⊆ U, where U is λpc-open. Therefore, B is a g-λpc-closed set in X.

In the following example, we have two g-λpc-closed sets A and B such that A ⊆ B but B 6⊂ λpcCl(A).

Example 4.3 Let X = {a, b, c}, and τ = {φ, {a}, {c}, {a, c}, {b, c}, X}. Let λ : PO(X) → P (X) be identity p-
operation. If A = {a} and B = {a, c}, then A and B are g-λpc-closed sets in (X, τ). But A ⊆ B 6⊂ λpcCl(A).

Theorem 4.4 Let λ : PO(X) → P (X) be an p-operation, then for each singleton set {x} is λpc-closed or X\{x}
is g-λpc-closed in (X, τ).

Proof. Suppose that {x} is not λpc-closed, then X\{x} is not λpc-open. Let U be any λpc-open set such that
X\{x} ⊆ U, then U = X. Therefore λpcCl(X\{x}) ⊆ U. Hence X\{x} is g-λpc-closed.

Proposition 4.5 A subset A of (X, τ) is g-λpc-closed if and only if λpcCl({x}) ∩A 6= φ, for every x ∈ λpcCl(A).

Proof. Let U be aλpc-open set such that A ⊆ U and let x ∈ λpcCl(A). By assumption, there exists a z ∈ λpcCl({x})
and z ∈ A ⊆ U . It follows From Proposition 3.19, that U ∩ {x} 6= φ, hence x ∈ U, implies λpcCl(A) ⊆ U. Therefore
A is g-λpc-closed.
Conversely, suppose that x ∈ λpcCl(A) such that λpcCl({x}) ∩ A = φ. Since A ⊆ X\λpcCl({x}) and A is g-λpc-
closed implies that λpcCl(A) ⊆ X\λpcCl({x}) holds, and hence x /∈ λpcCl(A), which is contradiction. Therefore
λpcCl({x}) ∩A 6= φ.

Theorem 4.6 If a subset A of X is g-λpc-closed set in X, then λpcCl(A)\A does not contain any non empty
λpc-closed set in X.

Proof. Let A be a g-λpc-closed set in X. Let F be a λpc-closed set such that F ⊆ λpcCl(A)\A and F 6= φ.
Then F ⊆ X\A which implies that A ⊆ X\F . Since A is g-λpc-closed and X\F is a λpc-open set, therefore
λpcCl(A) ⊆ X\F , so F ⊆ X\λpcCl(A). Hence F ⊆ λpcCl(A) ∩X\λpcCl(A) = φ. This shows that, F = φ which is
a contradiction. Hence λpcCl(A)\A does not contains any non empty λpc-closed set in X.

Definition 4.7 Let (X, τ) be a topological space then (X, τ) is said to be:

1. a λpc-T0 space if for each distinct points x, y ∈ X there exists a λpc-open set U such that x ∈ U and y /∈ U or
y ∈ U and x /∈ U.

2. a λpc-T1/2 space if every g-λpc-closed set in (X, τ) is λpc-closed.

3. a λpc-T1 space if for each distinct points x, y ∈ X, there exists a λpc-open set, containing and respectively such
that y /∈ U and x /∈ V.

4. a λpc-T2 space if for each x, y ∈ X there exists a λpc-open sets U , V such that x ∈ U and y ∈ V and U∩V 6= φ.

Proposition 4.8 Each λpc-Ti space is pre-Ti (i = 0, 1/2, 1, 2).

Proof. Obvious.
The following example show that every pre-Ti space need not be λpc-Ti (i = 0, 1/2, 1, 2).
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Example 4.9 Let X = {a, b, c}, and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if
A = {a} and λ(A) = X otherwise. Then the space X is a pre-T0 but it is not λpc-T0 space. Moreover a space is
pre-Ti, for i = 0, 1/2, 1, 2.

Theorem 4.10 A space X is λpc-T0 if and only if for each distinct points x and y in X, either x /∈ λpcCl({y}) or
y /∈ λpcCl({x}), .

Proof. Let x 6= y in a λpc-T0 space X. Then there exists an λpc-open set U containing one of them but not the
other, without loss of generality, we assume that U contains x but not y. Then U ∩ {y} = φ, this implies that
x /∈ λpcCl({y}).
Conversely, Let x and y be two distinct points of X, then by hypothesis, either x /∈ λpcCl({y}) or y /∈ λpcCl({x}).
With out loss of generality, we assume that y /∈ λpcCl({x}). Then X\λpcCl({x}) is an λpc-open subset of X
containing y but not x. Therefore, X is λpc-T0.

Theorem 4.11 Let λ : PO(X) → P (X) be an p-operation, then the following statements are equivalent:

1. (X, τ) is λpc-T1/2.

2. Each singleton {x} of X is either λpc-closed or λpc-open.

Proof. (1) ⇒ (2) : Suppose that {x} is not λpc-closed. Then by Theorem 4.4, X\{x} is g-λpc-closed. Since
(X, τ) is λpc-T1/2, then X\{x} is λpc-closed. Hence, {x} is λpc-open.
(2) ⇒ (1) : Let A be any g-λpc-closed set in (X, τ) and x ∈ λpcCl(A). By (2), we have {x} is λpc-closed or λpc-open.
If {x} is λpc-closed and x /∈ A will imply x ∈ λpcCl(A)\A which is not true by Theorem 4.6, so x ∈ A. Therefore,
λpcCl(A) = A, so A is λpc- closed. Therefore, (X, τ) is λpc-T1/2.
On the other hand, if {x} is λpc-open, then as x ∈ λpcCl(A),, we have {x}∩A 6= φ. Hence x ∈ A, so A is λpc-closed.

Corollary 4.12 Each λpc-T1/2 space is λpc-T0 space.

Proof. Follows from Theorem 4.11 and Theorem 4.10.

Example 4.13 Let X = {a, b, c} and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if A
is empty, A = {a} or {a, b} and λ(A) = X otherwise. Then (X, τ) is a λpc-T0 space but not λpc-T1/2 space because
{a, b} is g-λpc- closed but not λpc- closed.

Theorem 4.14 Each λpc-T1 space is λpc-T1/2 space.

Proof. Follows from Theorem 4.6.

Example 4.15 X = {a, b}, and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if A is
empty and λ(A) = X otherwise. Then (X, τ) is a λpc-T1/2 space but not λpc-T1 space.

Definition 4.16 A topological space (X, τ) is called a λpc-symmetric space if for x and y in X, x ∈ λpcCl({y})
implies that y ∈ λpcCl({x}).

Theorem 4.17 Let (X, τ) be a λpc-symmetric space, then the following are equivalent:

1. (X, τ) is λpc-T0.

2. (X, τ) is λpc-T1/2.

3. (X, τ) is λpc-T1.

Proof. It is enough to prove only the necessity of (1) ⇔ (2). Let x 6= y and since (X, τ) is λpc-T0, we may assume
that x ∈ U ⊆ X\{y} for some U ∈ POλpc(X). Then x /∈ λpcCl({y}) and hence y /∈ λpcCl({x}). Therefore, there
exists V ∈ POλpc(X) such that y ∈ V ⊆ X\{x} and (X, τ) is a λpc-T1 space.

Remark 4.18 From the definitions of λpc-Ti, (i = 0, 1/2, 1, 2) and previous results, we get the following diagram
of implications:
λpc-T2 ⇒ λpc-T1 ⇒ λpc-T1/2 ⇒ λpc-T0
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Definition 4.19 Let λ : PO(X) → P (X) be an p-operation, a topological space (X, τ) is called λpc-R0 if U ∈
POλpc(X) and x ∈ U , then λpcCl({x}) ⊆ U .

Theorem 4.20 For any topological space X and any s-operation λ, the following are equivalent:

1. X is λpc-R0.

2. F ∈ PCλpc(X) and x /∈ F implies F ⊆ U and x /∈ U for some U ∈ POλpc(X).

3. F ∈ PCλpc(X) and x /∈ F implies F ∩ λpcCl({x}) = φ.

4. For any two distinct points x, y of X, either λpcCl({x}) = λpcCl({y}) or λpcCl({x}) ∩ λpcCl({y}) = φ.

Proof. (1) ⇒ (2): F ∈ PCλpc(X) and x /∈ F implies x ∈ X\F ∈ POλpc(X) then λpcCl({x}) ⊆ X\F . By (1), if
we put U = X\λpcCl({x}), then x /∈ U ∈ POλpc(X) and F ⊆ U.
(2) ⇒ (3) : if F ∈ PCλpc(X) and x /∈ F , then there exists U ∈ POλpc(X) such that x /∈ U and F ⊆ U . By (2), we
have U ∩ λpcCl({x}) = φ, so F ∩ λpcCl({x}) = φ.
(3) ⇒ (4) : Suppose that for any two distinct points x, y of X, λpcCl({x}) 6= λpcCl({y}). Then suppose, without
loss of generality, that there exists some z ∈ λpcCl({x}) such that z /∈ λpcCl({y}). Thus there exists a λpc-open set
V such that z ∈ V and y /∈ V but x ∈ V . Thus x /∈ λpcCl({y}). Hence by (3), λpcCl({x}) ∩ λpcCl({y}) = φ.
(4) ⇒ (1): Let U ∈ POλpc(X) and x ∈ U . Then for each y /∈ U , x /∈ λpcCl({y}). Thus λpcCl({x}) 6= λpcCl({y}).
Hence by (4), λpcCl({x}) ∩ λpcCl({y}) = φ, for each y ∈ X\U . So λpcCl({x}) ∩ [∪{λpcCl({y}) : y ∈ X\U}] = φ.
Now, U ∈ POλpc(X) and y ∈ X\U , then {y} ⊆ λpcCl({y}) ⊆ λpcCl(X\U) = X\U . Thus X\U =

⋃{λpcCl({y}) :
y ∈ X\U}. Hence, λpcCl({x}) ∩X\U = φ, so λpcCl({x}) ⊆ U . This implies that (X, τ) is λpc-R0.

Theorem 4.21 Let (X, τ) be a topological space and λ : PO(X) → P (X) be any p-operation, then the following
are equivalent:

1. X is λpc-T1.

2. λpcCl({x}) = {x} for all x ∈ X.

3. X is λpc-R0 and λpc-T0.

Proof. (1) ⇒ (2) : Let y /∈ {x}, then there exists U ∈ POλpc(X) such that y ∈ U, x /∈ U , so U ∩ {x} = φ. Hence
y /∈ λpcCl({x}) implies λpcCl({x}) ⊆ {x} also {x} ⊆ λpcCl({x}) always, hence λpcCl({x}) = {x} for all x ∈ X.
(2) ⇒ (3) : Let x, y ∈ X with x 6= y. Then {x} and {y} are λpc-closed and hence X\{x} is a λpc-open set containing
y but not x. This shows that X is λpc-T0. Again, x, y ∈ X with x 6= y, then λpcCl({x}) 6= λpcCl({y}). Also,
λpcCl({x}) ∩ λpcCl({y}) = φ. Thus, by Theorem 4.20, X is λpc-R0.
(3) ⇒ (1) : Let x, y ∈ X with x 6= y. there exists U ∈ POλpc(X) such that x ∈ U and y /∈ U then, λpcCl({x}) ⊆ U
(as X is λpc-R0) and so y /∈ λpcCl({x}). Hence x ∈ U ∈ POλpc(X), y /∈ U and y ∈ X\λpcCl({x}) ∈ POλpc(X),
x /∈ X\λpcCl({x}). Therefore, X is a λpc-T1 space.

Definition 4.22 Let (X, τ) be a topological space λ : PO(X) → P (X) be an p-operation. The space X is said
to be λpc-R1 if for x, y ∈ X with λpcCl({x}) 6= λpcCl({y}), there exist disjoint λpc-open sets U and V such that
λpcCl({x}) ⊆ U and λpcCl({y}) ⊆ V.

Theorem 4.23 If λ : PO(X) → P (X) is an p-operation and X is λpc-R1, then X is λpc-R0.

Proof. Let U ∈ POλpc(X) and x ∈ U . If y /∈ U , then λpcCl({x}) 6= λpcCl({y}) ( as x /∈ λpcCl({y})). Hence there
exists V ∈ POλpc(X) such that λpcCl({y}) ⊆ V and x /∈ V . This gives that y /∈ λpcCl({x}), so λpcCl({x}) ⊆ U .
Hence, X is a λpc-R0 space.

By the following examples, we show the converse of above theorem is not true in general, and also we show
λpc-R0 and pre-R0 are independent.

Example 4.24 Let X = {a, b} and τ = {φ, {a}, X}. We define an p-operation λ : PO(X) → P (X) as λ(A) = A
if A is empty and λ(A) = X otherwise. Clearly X is λpc-R0, but it is neither pre-R0 nor pre-R1.

Example 4.25 Let X = {a, b}, and τ = P (X). We define an p-operation λ : PO(X) → P (X) as λ(A) = A if A
is empty or A = {a} and λ(A) = X otherwise. Clearly X is pre-R0 and pre-R1, but it is not λpc-R0.
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Theorem 4.26 Let (X, τ) be a topological space λ : PO(X) → P (X) be an p-operation. Then the following are
equivalent:

1. X is λpc-T2.

2. X is λpc-R1 and λpc-T1.

3. X is λpc-R1 and λpc-T0.

Proof. (1) ⇒ (2) : Let X be λpc-T2, then X is clearly λpc-T1. Now if x, y ∈ X with λpcCl({x}) 6= λpcCl({y})
then x 6= y, so there exist U, V ∈ POλpc(X) such that x ∈ U, y ∈ V and U ∩ V = φ. Hence by Theorem 4.21,
λpcCl({x}) = {x} ⊆ U and λpcCl({y}) = {y} ⊆ V and U ∩ V = φ. Therefore, X is λpc-R1.
(2) ⇒ (3) :It is obvious.
(3) ⇒ (1) : Let X be λpc-R1 and λpc-T0, then by Theorem 4.23, X is λpc-R0 and λpc-T0. Hence, by Theorem 4.21,
X is λpc-T1 . If x, y ∈ X with x 6= y, then λpcCl({x}) = {x} 6= {y} = λpcCl({y}). Since X is λpc-R1, so there exist
U, V ∈ POλpc(X) such that λpcCl({x}) = {x} ⊆ U, λpcCl({y}) = {y} ⊆ V and U ∩ V = φ. Hence, X is λpc-T2.
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