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Abstract 

 

This article presents multi-step stress accelerated life tests based on type I censoring. It is assumed that the lifetime at 

design stress has the Weibull Poisson distribution. The scale parameter of the Weibull Poisson failure time at constant 

levels is assumed to have an inverse power law of the stress levels. Under the assumption of a cumulative exposure 

model, the maximum likelihood method is used to obtain the estimators of the model parameters. The optimal design of 

the accelerated life tests is studied according to the A-optimality criterion to specify the optimal stress change time and 

the optimal censoring time. Finally, the numerical studies are performed to illustrate the proposed procedures. 

 
Keywords: Cumulative Exposure Model, Lifetime Distribution, Step Stress ALT, Optimal Test Plan, A-Optimality. 
 

1. Introduction 

Accelerated life tests (ALTs) are used to estimate the lifetime of highly reliable products within a reasonable testing 

time. The test products are run at higher than usual levels of stress (which includes temperature, voltage, pressure, etc.) 

to obtain early failures. In ALT experiments, the researcher is often interested in the effects of varying stress levels on 

the lifetimes of experimental units. 

One important way in ALT is step-stress accelerated life test (SSALT). There are mainly two types of SSALTs, a 

simple and a multiple SSALT. In the simple SSALT there is a single change of stress during the test. Nelson [14] 

originally proposed the simple SSALT, in which only one change of stress occurs with a cumulative exposure (CE) 

model for Type-I and Type-II censored data. Miller and Nelson [10] obtained the optimal simple SSALT plans for the 

case where test products have exponentially distributed lives and are observed continuously until all test products fail. 

Xiong [1] has studied an exponential CE model with a threshold parameter in the simple SSALT. Lu and Rudy [9] dealt 

with the Weibull CE model with the inverse power law in the simple SSALT. For more research on SSALTs (see for 

example, Xu and Fei [5], Nelson [16] and Wu et al.  [12]. 

On the other hand, in the multiple-step SSALT there is more than one change of stress level. Khamis and Higgins [6] 

considered the optimum three step SSALT for the exponentially distributed Type I censored data. Khamis [7] proposed 

an optimal m level SSALT design with multiple stress variables and investigated it on three level SSALT data.  

Yeo and Tang [8] have investigated three-level SSALT in an exponential CE model. McSorley et al [2] have shown the 

properties of the maximum likelihood estimators (MLEs) of parameters in the Weibull CE model with a log-linear 

function of stress on three-level SSALT data. Aly and Bleed [4] presented estimation and derivation of optimum test 

plan for generalized logistic distribution. Also, Saxena et al. [11] dealt with the problem of designing an optimum step 

stress accelerated life test for Rayleigh distribution. 

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide variety of scientific and 

technological fields. Several distributions have been proposed in the literature to model lifetime data by compounding 

some useful life distributions. Lu and Shi [13] introduced a new compounding distribution named the Weibull Poisson 

(WP) distribution. The failure rate function of WP distribution has various shapes; it can be increasing, decreasing and 

upside down bathtub shaped or unimodal. The property of various shapes of the failure rate function encourages 
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practitioners to adopt the WP for the inferences of life information and biological study. The probability density 

function (pdf) of Weibull Poisson distribution takes the following form: 

           
       

     
                                                                                                                            

Where   is the shape parameter and    is scale parameter  the corresponding cumulative distribution function (cdf) has 

the following form: 

                     

          
  

                                                                                                              (2) 

Note that when      the Weibull Poisson distribution reduces to an exponential Poisson and as   tends to zero, the 

Weibull Poisson distribution reduces to a two parameter Weibull distribution. 

This article deals with the problem of designing an optimum multi-step stress accelerated life test for Weibull Poisson 

distribution based on type I censoring. The scale parameter of the distribution is assumed to have an inverse power law 

function of stress level. The optimum time for changing stress levels will be obtained using A-optimality criterion 

which is based on the trace of the Fisher information matrix. Also the optimum censoring time are obtained. 

The layout of the article is as follows. The model and assumptions are described in details in Section 2. In Section 3 the 

maximum likelihood method is introduced to estimate the model parameters under type I censoring data. In the same 

section, the approximate confidence intervals are obtained for the MLEs. In Section 4 the optimum time of changing 

stress levels and the optimum censoring time are presented. The simulation technique is presented in Section 5. Finally 

conclusion is presented in Section 6. 

2. Assumptions and test procedure 

During the multiple SSALT, units are subjected to successively higher levels of stress. After a unit is used at a normal 

level of stress   , it is subjected to an initial level of stress     for a predetermined time    at the first stage in the test. If 

it does not fail, it is subjected to a higher level of stress     for a predetermined time    at the next stage. In analogy, it is 

repeatedly subjected to higher levels of stress until it fails. The other units are tested similarly. The pattern of stress 

levels and time intervals is the same for all units. The model assumptions for multiple SSALT procedure will be 

described as follows: 

i. There are multiple     levels of high stress,                in the experiment, and      is the design stress under 

normal use conditions, where,              . 

ii. A random sample of N identical units is placed on test under the first stress     and run until time    and then 

stress is changed to    and run until time     and so on, the test is continued until all units are failed or it reached 

the censored time T (predetermined time). 

iii. The number of failures in the sample is      
 
    where     is the number of failures from first step under the 

first stress    ,    is the number of failures from second step under the second stress     and     is the number of 

failures from last step under the last stress     ,    are the total number of units run on the test. 

iv. The failure times                  at stress levels                 are assumed to be WP distribution at any 

stress; with pdf defined in (1). 

v. The lifetimes of the units at each stress level are identically independent distributed (i.i.d). 

vi. The WP scale parameter                  of the underlying lifetime distribution is assumed to have an inverse 

power function of stress levels i.e       
 
                      

  

  
        

   
       

  

 
,   is the constant 

of proportionality and   is the power of the applied stress. 

vii. The WP parameters   and   are assumed to be constant, i.e. independent of stress. 

viii. To analyze the data from multi-step stress ALT, a model is needed to relate the distribution under step stress to 

the distribution under constant stress. The most commonly used model is cumulative exposure model proposed by 

Nelson [14]. The basic idea of the CE model starts from the fact that a step stress ALT model must explain the 

cumulative effect of the applied stresses; the CE model assumes that the remaining test units are failed according 

to the cumulative density function of current stress level regardless of the history on previous stress levels. 

According to Nelson [15], the cumulative exposure model with k-step stress ALT is given by: 

     

 
 

 
                                                  

                                   
 

                               

                                                                                                                   (3) 

Where                           
    

 
 
                 

 
 

          
  

 the cumulative distribution function of the 

failure at stresses              ,         is the solution of the equation                            

   2;   1. Therefore the general form solution is as follows: 
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Note that       and      where    is the time of changing stress.  

Thus the associated pdf will be as follows: 

     

 
 

 
                                                      

                                     
 

                                

                                                                                                                                  (5) 

3. Point and interval maximum likelihood estimations 

In this Section, the point and interval estimators of the model parameters are introduced using the maximum likelihood 

method. 

 

3.1. Point estimation 
 

According to type-I censoring, the test applied to   identical sample units which will be terminated when all units fail 

or censoring time   is reached. Let                             be independent and identically distributed Weibull 

Poisson random variable, the likelihood function for multiple SSALT with type I censored data is considered to have 

the following form: 

  
  

  
    

  

   

 

   

                                  
 
                                                                                               

where        
 
    is the number of surviving units? Then the likelihood function for three parameter WP 

distribution for k-step stress ALT with type I censored is as follows: 

  
  

  
  

    
 
         

      
           

    
 
 
      

     

  

   

 

   

 

         
     

 
   

          
  

 

 

                                   

   
  

  
  

    
 
         

      
           

    
 
 
      

     
  

  

   

 

   

   
     

     
 
   

    

     
 

 

                                                       

where                                    and                
    

  
 
   

                 . 

The MLEs of the unknown parameters are obtained by maximizing the logarithm of the likelihood function expressed in 

the following form: 

      
  

  
                                              

  

   

 

   

 

   

 

                     
      

      
                

  

   
 
   

  

   
 
        

      
     

 
   

                                                                          

The first partial derivatives of the likelihood equation with respect to the parameters       and   respectively, will be as 

the follows: 
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where         
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After equating the Equations      to      with zero and solving it together, the likelihood estimates           and    will 

be obtained. Notice that the first derivatives of Equations      to      be nonlinear equations and their solutions will 

be obtained numerically. In addition, estimates values     for each stress will be obtained by substituting the estimates 

values of    and    in the inverse power law relationship       
 
.  

 

3.2. Interval estimation 
 

It can be said that the MLEs have an asymptotic variance-covariance matrix defined by the inverse of  . The 

approximate confidence intervals (CI) of the parameters are derived based on the asymptotic distribution of the MLEs 

for the unknown parameters. The asymptotic distribution of 
        

        

 can be approximated by a standard normal 

distribution, where         is the asymptotic variance. Therefore, the two-sided approximate        percent confidence 

limits  for θ ( lower bound (LB), upper bound (UB)) can be obtained, such that   

LB (                    UB (θ)                                                                                                                    (14) 

were      is the           standard normal percentile and                  . 

In relation to the asymptotic variance-covariance matrix of the MLE of the parameters, it can be approximated by 

numerically inverting the observed Fisher-information matrix. The observed Fisher-information matrix is composed of 

the negative second derivatives of the natural logarithm of the likelihood function evaluated at the MLEs. It can be 

given by the following matrix: 

   

 
 
 
 
 
 
 
     

             

     

    
        

     

    
       

     

    
      

     

    
          

     

   
         

     

    
        

     

    
       

     

    
          

     

    

     

   

     

    

        

     

    

     

    

     

    

     

    
 
 
 
 
 
 

                                                                                                                  (15) 

The elements of trace of the matrix   can be expressed by the following equations:  
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4. Optimum criterion 

The purpose of this Section is to explore the problem of determining the optimal time of changing stress level for 

multiple SSALT under type I censoring data assuming WP as a lifetime model. Furthermore, the optimal censoring time 

which leads to the most accurate estimate is determined.  

 

4.1. Optimum time of changing stress level 
 

An optimal test plan allows maximum possible information to be obtained from the tests, using the same number of test 

items. So, it provides certain objective, such as providing the most precise estimates to improve the quality of the 

statistical inference. In addition, this test reduces the total required time on test. A useful criterion for optimum plans is 

A-optimality criterion which was mentioned in Aly [3]. A-optimality criterion is based on minimizing the trace of the 
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variance-covariance matrix of the MLEs for the unknown parameters, and then the optimal time of changing stress 

levels      can be obtained by solving the following equation: 

 
     

     

                                                                                                                                                                                     

where  

     
     

   
 

     

   
 

     

   
 

     

   
                                                                                                                                        

The solution of (20) is not in a closed form. It requires an iterative method. 

 

4.2. Optimum censoring time 
 

Based on A-optimality criterion that minimizes the trace of the variance-covariance matrix of the MLEs of the unknown 

parameters, the optimal censored time of     can be obtained by solving the following equation: 
     

  
                                                                                                                                                                                                     

where 

     
     

   
 

     

   
 

     

   
 

     

   
                                                                                                                                        

In general, the solution of (22) is not in a closed form and therefore requires a numerical method to obtain the optimal 

censored time T which minimizes        

5. Simulation study 

In order to obtain the MLEs of the unknown parameters and evaluate the performance of the MLEs, several sample 

sizes                  are generated from three parameter WP distribution of multiple SSALT data. The mean 

square errors (MSEs) and the biases for the MLEs are calculated. In addition, optimum change time for each stress level 

and optimum censoring time are calculated. The simulation procedures are described through the following steps:  

i. For a given values of the parameters                           and                and selected values 

of stresses         ,      and      calculate       
 
 for each stress level where      . 

ii. Generate random samples of size                   from uniform       distribution and obtain the order 

statistics (          ). 

iii. For a given value of the first stress change time           find    such that 

                                
  

          
  

          

iv. For a given value of the second stress change time       find    such that 

         
 

 

 
 
      

     
 
        

    
 

    
  

   

    

 

 

 

   

 

 
 

      
  

           
  

v. For a given value of the censoring time      find    such that 

             
 

 

 
 
 
      

  
 
    

 

 

 
 
        

    
 

    
  

   

         
    

 

    
  

   

    

 

 
 

 

 

  
 

   

 

 
 
 

      
  

              
 

vi. Then the order observations             
             are calculated from (2). 

vii. Based on          ,    ,        and the observed observations, MLEs for the Parameters        and   can be 

obtained by solving the nonlinear equations from (10) to (13) numerically. Also, both the LB and the UB for each 

parameter are obtained.   

viii. Compute the biases and MSEs for the model parameters over 100 samples are obtained.   

ix. The optimum time of changing stress level and the optimum censoring time are obtained by solving Equations 

(20) and (22) respectively, numerically through iteration. 

Simulation results based on k-SSALT for Weibull Poisson distribution under type I censoring with     are 

summarized in Tables from 1 to 7. Tables 1-4 present the biases and the MSEs for the unknown parameters. Table 5 

shows the CI for the MLEs. Tables 6-7 give the number of failures at each stress level, the optimum time of changing 

stress levels and the optimum censoring time. From these tables, the following conclusions can be observed: 

1. For fixed values for time of changing stress levels    and censoring time T as N increases, the MSEs and the 

biases of model parameters decrease.  
2. The MSEs for the MLEs    and    are smaller as the value of the parameters   and   increase. 
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3. The MSEs and the biases are the smallest for         and   . 

4. The estimate values of    has the shortest confidence interval. 

5. As the sample size increases the interval of the estimator’s decreases. 

6. As the stress increases, it is evident that the MSE of the estimated scale parameter    tends to decrease 

7. For fixed values for time of changing stress levels    and censoring time T, the number of failures    before time 

   increase and number of failures         decrease. 

8. For different values of the parameters, as sample size increases, the censoring time T tends to increase. 

 

 
Table 1: The Biases and MSEs for the MLEs of the Unknown Parameters (       ) For       

                       

Parameter C p              
Bias -0.053 0.144 -0.028 -0.027 0.192 0.253 0.072 

MSE 0.007 0.442 0.002 0.013 0.040 0.066 0.006 

                         
Parameter C p              

Bias -0.124 0.507 -0.0160 -0.203 0.586 0.406 -0.004 
MSE 0.033 0.484 0.014 0.163 0.340 0.166 0.005 

                          

Parameter C p              
Bias -0.069 -0.151 -0.002 0.237 0.475 0.467 0.162 

MSE 0.020 0.040 0.045 0.032 0.247 0.227 0.027 

                         
Parameter C p              

Bias -0.051 0.103 -0.002 -0.161 0.567 0.537 0.194 

MSE 0.002 0.012 0.0008 0.028 0.351 0.300 0.039 

                          
Parameter C p              

Bias -0.041 0.067 -0.004 -0.267 0.513 0.380 0.108 
MSE 0.001 0.004 0.0001 0.080 0.271 0.148 0.012 

                            
Parameter C p              

Bias 0.106 0.082 -0.049 -0.109 0.472 0.431 -0.028 

MSE 0.044 0.236 0.379 0.079 0.595 0.225 0.004 

                           
Parameter C p              

Bias -0.078 -0.234 -0.047 -0.239 0.476 0.321 0.054 
MSE 0.008 0.089 0.006 0.064 0.259 0.109 0.003 

                            

Parameter C p              
Bias -0.041 -0.096 -0.007 -0.217 0.577 0.364 0.057 

MSE 0.001 0.011 0.0006 0.053 0.351 0.140 0.004 

                             
Parameter C p              

Bias 0.108 0.377 -0.073 -0.172 0.462 0.450 -0.018 

MSE 0.054 0.580 0.021 0.068 0.349 0.233 0.003 

 

 

 

 
Table 2: The Biases and MSEs for the MLEs of the Unknown Parameters (       ) For      

                       

Parameter C p              
Bias -0.006 0.021 -0.001 -0.043 0.267 0.171 0.092 
MSE 0.0008 0.387 0.00002 0.003 0.034 0.073 0.008 

                         
Parameter C p              

Bias -0.078 0.097 -0.0002 -0.368 0.432 0.347 0.221 

MSE 0.006 0.009 0.00008 0.223 0.320 0.300 0.049 

                          
Parameter C p              

Bias -0.060 -0.130 -0.002 -0.204 0.334 0.311 0.156 

MSE 0.003 0.018 0.006 0.044 0.181 0.192 0.025 

                         
Parameter C p              

Bias -0.034 0.070 -0.001 -0.110 0.441 0.430 0.199 
MSE 0.001 0.006 0.0004 0.015 0.295 0.282 0.040 

                          
Parameter C p              

Bias -0.042 0.068 -0.004 -0.267 0.404 0.375 0.106 

 

MSE 
0.001 0.005 0.00002 0.080 0.256 0.142 0.012 
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Parameter C p              
Bias -0.020 0.157 -0.014 -0.149 0.338 0.316 -0.064 
MSE 0.0004 0.025 0.02 0.023 0.291 0.102 0.004 

                           
Parameter C p              

Bias -0.047 0.110 -0.006 -0.260 0.450 0.337 0.079 

MSE 0.002 0.012 0.0004 0.068 0.207 0.115 0.006 

                            
Parameter C p              

Bias -0.031 -0.071 -0.005 -0.164 0.485 0.375 0.065 

MSE 0.0009 0.005 0.0003 0.028 0.346 0.142 0.004 

                             
Parameter C p              

Bias 0.013 0.371 -0.0006 -0.090 0.343 0.328 -0.084 
MSE 0.001 0.484 0.0006 0.021 0.307 0.189 0.008 

 

Table 3: The Biases and MSEs for the MLEs of the Unknown Parameters (       ) For      

                       

Parameter C p              
Bias -0.010 0.368 -0.005 0.067 0.306 0.291 0.027 

MSE 0.0002 0.0510 0.0002 0.095 0.323 0.088 0.007 

                         
Parameter C p              

Bias -0.053 0.099 -0.002 -0.259 0.500 0.384 0.161 

MSE 0.003 0.010 0.00004 0.072 0.565 0.359 0.026 

                          
Parameter C p              

Bias -0.025 -0.080 -0.105 -0.396 0.462 0.436 0.063 
MSE 0.004 0.024 0.05 0.058 0.559 0.193 0.008 

                         
Parameter C p              

Bias -0.036 -0.074 -0.002 -0.115 0.386 0.271 0.184 

MSE 0.001 0.005 0.00004 0.014 0.233 0.240 0.034 

                          
Parameter C p              

Bias -0.034 0.056 -0.004 -0.213 0.475 0.358 0.103 

MSE 0.001 0.003 0.00002 0.054 0.228 0.130 0.011 

                            
Parameter C p              

Bias 0.090 0.038 -0.278 -0.184 0.390 0.371 -0.044 

MSE 0.044 0.040 0.085 0.039 0.595 0.150 0.003 

                           
Parameter C p              

Bias -0.045 0.105 -0.007 -0.241 0.403 0.309 0.071 

MSE 0.002 0.011 0.00005 0.059 0.167 0.097 0.005 

                            
Parameter C p              

Bias -0.029 0.066 -0.005 -0.151 0.450 0.355 -0.059 

MSE 0.0008 0.004 0.00003 0.024 0.306 0.127 0.003 

                             
Parameter C p              

Bias 0.115 0.337 0.028 -0.049 0.499 0.361 -0.027 
MSE 0.045 0.327 0.002 0.012 0.347 0.196 0.003 

 
 

 

 

Table 4: The Biases and MSEs for the MLEs of the Unknown Parameters (       ) For       

                        

Parameter C p              
Bias 0.012 -0.393 -0.012 0.17 0.554 0.287 -0.033 
MSE 0.001 0.0007 0.0005 0.153 0.635 0.085 0.010 

                          
Parameter C p              

Bias -0.055 0.103 -0.002 -0.266 0.540 0.384 0.154 

MSE 0.003 0.011 0.000005 0.074 0.413 0.335 0.024 

                           
Parameter C p              

Bias 0.019 0.027 -0.108 -0.158 0.571 0.407 0.096 

MSE 0.009 0.015 0.0044 0.0166 0.466 0.169 0.017 

                          
Parameter C p              

Bias -0.036 0.073 -0.002 -0.113 0.436 0.464 0.177 
MSE 0.001 0.005 0.00004 0.013 0.202 0.220 0.032 
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Parameter C p              
Bias -0.036 0.059 -0.004 -0.219 0.451 0.342 0.096 
MSE 0.001 0.003 0.00002 0.056 0.207 0.118 0.009 

                             
Parameter C p              

Bias 0.188 0.017 -0.050 -0.197 0.496 0.443 -0.033 

MSE 0.097 0.0110 0.009 0.040 0.496 0.228 0.002 

                            
Parameter C p              

Bias 0.027 0.009 -0.011 0.079 0.575 0.360 -0.051 

MSE 0.004 0.008 0.0003 0.048 0.304 0.140 0.006 

                             
Parameter C p              

Bias 0.016 0.045 -0.0008 0.062 0.331 0.499 -0.043 
MSE 0.001 0.0005 0.00001 0.022 0.533 0.249 0.005 

                              
Parameter C p              

Bias 0.109 0.041 -0.074 -0.043 0.567 0.523 -0.062 

MSE 0.058 0.39 0.021 0.054 0.589 0.32 0.008 

 

 

Table 5: The MLEs and the Confidence Intervals for the MLEs for the Unknown Parameters (       ) For                  
                                                         

N 
        

   L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.547 0.416 0.677 1.944 1.604 2.283 0.672 0.644 0.699 1.273 1.058 1.487 

50 0.593 0.226 0.959 1.821 0.586 3.055 0.699 0.542 0.855 1.257 0.521 1.992 

70 0.590 0.571 0.608 2.568 1.832 3.303 0.705 0.685 0.724 1.467 0.879 2.055 
100 0.612 0.583 0.640 2.593 1.189 3.996 0.688 0.654 0.721 1.47 0.779 2.160 

                                                                   

N 
        

   L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.576 0.313 0.838 2.507 0.968 4.045 0.540 0.344 0.736 1.597 0.915 2.278 
50 0.822 0.808 0.835 1.397 1.377 1.416 0.400 0.399 0.412 1.232 1.108 1.355 

70 0.847 0.827 0.866 1.699 1.655 1.742 0.698 0.697 0.699 1.241 1.117 1.364 
100 0.845 0.825 0.864 1.703 1.669 1.736 0.698 0.697 0.699 1.234 1.126 1.341 

                                                                   

N 
        

   L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.831 0.811 0.850 1.751 1.699 1.802 0.698 0.696 0.699 0.763 0.697 0.828 

50 0.840 0.820 0.859 1.730 1.674 1.785 0.697 0.696 0.699 0.796 0.708 0.883 

70 0.875 0.699 1.050 2.386 1.190 3.581 0.495 0.138 0.851 0.904 0.718 1.089 

100 0.919 0.899 0.938 2.127 2.093 2.160 0.592 0.591 0.620 0.842 0.734 0.949 

                                                            

N 
        

   L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.849 0.821 0.876 1.703 1.637 1.768 0.698 0.694 0.699 0.839 0.737 0.940 

50 0.866 0.838 0.893 1.670 1.608 1.731 0.688 0.686 0.689 0.890 0.802 0.977 
70 0.864 0.848 0.879 1.674 1.640 1.707 0.698 0.696 0.699 0.885 0.836 0.933 

100 0.864 0.586 1.141 1.673 0.340 3.005 0.698 0.336 1.059 0.887 0.882 1.248 

                                                               

N 
        

   L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.659 0.639 0.678 1.467 1.427 1.475 0.796 0.794 0.797 1.333 1.157 1.508 

50 0.658 0.630 0.685 1.468 1.436 1.499 0.795 0.793 0.796 1.333 1.245 1.420 

                              

N                 

    L.B U.B    L.B U.B    L.B U.B    L.B U.B 

70 0.666 0.646 0.685 1.456 1.412 1.499 0.796 0.794 0.797 1.387 1.211 1.562 

100 0.664 0.650 0.677 1.459 1.431 1.480 0.795 0.794 0.796 1.381 1.337 1.424 

                                

N                 

    L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.706 0.349 1.062 2.782 1.790 3.773 0.151 0.012 0.314 1.141 0.685 1.596 

50 0.580 0.552 0.607 2.857 2.813 2.900 1.186 1.183 1.188 1.151 0.975 1.326 

70 0.690 0.318 1.061 2.738 2.350 3.125 0.922 0.028 1.815 1.116 0.977 1.254 
100 0.788 0.768 0.807 2.717 2.677 2.756 0.670 0.668 0.672 1.103 0.939 1.266 

                               

N                 

    L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.622 0.560 0.683 1.834 1.472 2.195 0.853 0.729 0.976 1.061 0.909 1.212 
50 0.653 0.651 0.654 1.710 1.661 1.758 0.893 0.884 0.901 1.040 1.012 1.067 

70 0.655 0.648 0.661 1.705 1.685 1.724 0.893 0.891 0.894 1.059 1.057 1.060 

100 0.627 0.138 1.115 2.909 2.258 3.559 0.789 0.083 1.661 1.379 1.317 1.440 
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N                 

    L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.659 0.631 0.686 1.696 1.634 1.757 0.893 0.886 0.899 1.083 0.944 1.221 
50 0.669 0.666 0.671 1.671 1.662 1.679 0.894 0.891 0.896 1.136 1.128 1.144 

70 0.864 0.848 0.879 1.666 1.646 1.685 0.894 0.696 0.699 1.149 1.142 1.204 

100 0.864 0.586 1.141 2.645 2.421 2.868 0.599 0.571 0.626 1.362 0.960 1.763 

                                 

N                 

    L.B U.B    L.B U.B    L.B U.B    L.B U.B 

30 0.708 0.306 1.109 2.348 1.976 2.719 0.227 0.020 0.474 1.128 0.745 1.510 

50 0.613 0.453 1.679 2.937 1.863 4.003 0.299 0.294 0.303 1.290 1.066 1.513 
70 0.715 0.369 1.060 2.371 1.518 3.223 0.328 0.317 0.336 1.151 0.805 1.496 

100 0.809 0.388 1.229 2.941 1.605 4.276 0.226 0.022 0.473 1.257 0.810 1.703 

 

 
Table 6: The Values of the Optimum Time      For                  

                                                                 

                                          
30 10 9 10 0.913 30 11 6 9 1.519 30 10 7 11 1.022 

50 17 16 16 0.959 50 19 10 16 1.176 50 17 12 18 0.994 

70 23 22 23 0.901 70 24 17 26 1.439 70 28 14 22 0.944 
100 34 31 34 0.913 100 39 20 32 1.35 100 34 24 37 0.986 

                                                                 

                                          
30 8 9 11 0.824 30 11 7 10 1.137 30 10 5 11 0.752 

50 14 16 18 1.092 50 19 12 16 1.118 50 21 9 14 0.937 
70 20 22 26 1.016 70 26 16 24 1.087 70 29 13 20 1.272 

100 29 31 38 1.009 100 37 23 34 0.968 100 42 19 29 1.39 

                                                              

                                          
30 14 5 6 1.870 30 8 9 11 1.784 30 13 6 8 1.743 

50 24 8 11 1.862 50 13 16 19 1.126 50 22 11 14 1.533 
70 34 12 15 1.223 70 19 22 28 1.709 70 30 15 20 1.947 

100 48 17 22 1.088 100 27 32 40 0.958 100 43 22 28 1.008 

 
Table 7: The Values of the Optimum Censoring Time     For                  

                                                                 

            
30 2.481 30 2.14 30 3.62 

50 3.249 50 2.562 50 3.283 

70 3.044 70 2.47 70 3.156 

100 4.002 100 4.266 100 3.339 

                                                                 

      T     
30 2.934 30 3.087 30 3.05 
50 3.037 50 3.381 50 5.491 

70 3.042 70 3.359 70 2.533 
100 4.04 100 4.624 100 2.381 

                                                              
N   N   N   
30 3.796 30 3.457 30 4.398 

50 2.302 50 3.561 50 3.041 

70 3.458 70 4.213 70 3.602 
100 4.923 100 4.041 100 3.516 

6. Conclusion 

In this paper, the maximum likelihood method for estimating the unknown parameters with type-I censoring are 

obtained. The data failure times for multiple SSALT are assumed to follow the three parameter WP distribution at each 

stress level with scale parameter which is an inverse power law function of the stress. The performance of the estimated 

parameters is evaluated using the biases and the mean square error criteria. MLEs and approximate confidence intervals 

are obtained using different values of the parameters. 

In addition, the corresponding optimum time of changing stress levels and optimum censoring time are obtained 

numerically by using A-optimality.  This optimum design is an important decision problem at the designing stage of the 

test as it gives guide to experimenters about when the stress change should be carried out during the test and when the 

test should be terminated. 
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