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Abstract

The Korteweg-de Vries (KdV) equation which is the third order nonlinear PDE has been of interest since Scott
Russell (1844) [5]. In this paper we study this kind of equation by Painlevé equation and through this study, we
find that KdV equation satisfies Painlevé property [4], but we could not find a solution directly, so we transformed
the KdV equation to the like-KdV equation, therefore, we were able to find four exact solutions to the original KdV
equation.
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1. Introduction

Most phenomena in the scientific field and other domains can be described and classified as nonlinear diffusion
equation which normally results from natural phenomena that appear in our daily lives such as the water waves at
the beach caused by wind or tides, also the movement of a ship, or those waves created by throwing a stone in a
pond or by raindrops; the same applies to other physical and mathematical phenomena [2] [6]. In this study, we
tried to find a solution to this type of equations although it is normally very difficult to find a clear-cut solution
[3]. However, through the use of Painlevé technique it is possible to find an analytic solution which physicists,
meteorologists, oceanographers, and others may benefit from in order to explain the result solution and arrive at a
better understanding.

2. Painlevé property

In this section we apply Painlevé’s property in the KdV equation:

ut + αuux + uxxx = 0, α ∈ R \ {0} (1)

Let u =
∑∞

j=0 ujφ
j−p be the series solution of the equation (1), where φ and uj are analytic functions in

a neighbourhood of the manifold φ = φ(t, x) = 0. First, we need to find value of p, where p is the equilibrium

point in the series solution. Now, to derive u in the series, where ut(t, x) = ∂u(t,x)
∂t , ux(t, x) = ∂u(t,x)

∂x and
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uxxx(t, x) = ∂3u(t,x)
∂x3 , by substituting them into the equation (1), and by comparing the lowest powers in the

produced equation, we find p = 2, by associating the summation [7], we get:

∞∑
j=3

uj−3,tφ
j−5 + α

∞∑
j=0

[
j−1∑
k=0

ukuj−1−k,x +

j∑
i=0

uj−iui(i− 2)φx

]
φj−5

+

∞∑
j=3

uj−3,xxxφ
j−5 +

∞∑
j=2

3(j − 4)uj−2,xxφxφ
j−5

+

∞∑
j=1

3(j − 3)(j − 4)uj−1,xφ
2
xφ

j−5 +

∞∑
j=2

(j − 4)uj−2φxxxφ
j−5

+
∞∑
j=1

3(j − 3)(j − 4)uj−1φxφxxφ
j−5 +

∞∑
j=2

3(j − 4)uj−2,xφxxφ
j−5

+

∞∑
j=2

(j − 4)uj−2φtφ
j−5 +

∞∑
j=0

(j − 2)(j − 3)(j − 4)ujφ
3
xφ

j−5 = 0, (2)

To find u0, then at j = 0 in the equation (2), we get:

u0 = −12

α
φ2x, (3)

To find u1, then at j = 1 in the equation (2), we get:

u1 =
12

α
φxx, (4)

To find u2, then at j = 2 in the equation (2), we get:

u2 = − 1

α

φt
φx

− 4

α

φxxx
φx

+
3

α

(
φxx
φx

)2

, (5)

Since p = 2, by using the technique of truncation, and let uj = 0, for all j > 2.
Then the series solution u =

∑∞
j=0 ujφ

j−p, becomes:

u =
u0
φ2

+
u1
φ

+ u2, (6)

This is the relation between u and u2.
Now, in the equation (2), we have to find all coefficients of uj , where uj ≡ 0 for all j < 0.

If : i = 0 ⇒ α

j∑
i=0

uj−iui(i− 2)φx = 2αφ3xuj ,

and,

If : i = j ⇒ α

j∑
i=0

uj−iui(i− 2)φx = −αφ3x(j − 2)uj .

Thus, the recursion relation is:

(j − 4)[j2 − 5j + (6− α)]φ3xuj = −uj−3,t − (j − 4)uj−2φt − 3(j − 4)uj−2,xφxx

−α
j−1∑
i=1

uj−iui(i− 2)φx − α

j−1∑
k=0

ukuj−1−k,x − uj−3,xxx − 3(j − 4)uj−2,xxφx

−3(j − 3)(j − 4)uj−1,xφ
2
x − (j − 4)uj−2φxxx − 3(j − 3)(j − 4)uj−1φxφxx, (7)

We note that the coefficients of uj in the equation (7) are (j− 4) and [j2 − 5j+(6−α)], then, in the general of the
integer resonance point is j = 4. The other resonance points depend on the value of α. For example, if α = 6, the
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resonance points are j = 0, 4, 5, and if α = 12, the resonance points are j = −1, 4, 6.
Now at j = 3 in the equation (7) and using the equations (3) and (4), we have,

u3 =
1

α

φxt
φ2x

+
φxxu2
φ2x

+
1

α

φxxxx
φ2x

, (8)

When j = 4 in the equation (7), since uj = 0 for all j > 2, we get u4 = 0.
Then the equation (1) satisfies the Painlevé property [7].
When j = 5 in the equation (7), since uj = 0 for all j > 2, we get,

u2,t + αu2u2,x + u2,xxx = 0. (9)

Then u2 is also a solution of the KdV equation (1).

3. Analytic solution

In this section, we follow the idea to derive analytic solution. They are invariant under this transformation [1],

H : φ −→ aφ+ b

cφ+ d
where ad− bc 6= 0.

They are the Schwartzian derivative [3],

S(φ) =
φxxx
φx

− 3

2

(
φxx
φx

)2

, (10)

and dimension of velocity,

C(φ) = − φt
φx
. (11)

Furthermore, we define,

L(φ) = −φxx
2φx

. (12)

The relations,

Lt = CLx − LCx +
1

2
Cxx and Lx = −L2 − 1

2
S. (13)

The compatibility of S and C given by,

St + Cxxx + 2CxS + CSx = 0. (14)

Now, by using the equations (5) and (8), we obtain:

αφxu3 =
φxt
φx

+
αφxx
φx

(
− 1

α

φt
φx

− 4

α

φxxx
φx

+
3

α

(
φxx
φx

)2
)

+
φxxxx
φx

.

Since, uj = 0 for all j > 2, we get:

φtφxx
φ2x

− φxt
φx

=
φxxxx
φx

− 4φxxφxxx
φ2x

+ 3

(
φxx
φx

)3

. (15)

Then, by comparing both sides of the equation (15) with equations (10) and (11), we observe:

Cx = Sx. (16)

Now, by using the equations (10), (11) and (12), then the equation (5), becomes:

u2 =
1

α
C − 4

α
S − 12

α
L2. (17)
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We derive the equation (16), to find u2,t, αu2u2,x and u2,xxx and substitute them into the equation (9),
then:

1

α
Ct −

4

α
St −

24

α
LLt −

1

α
CCx − 4

α
CSx − 24

α
CLLx − 4

α
SCx +

16

α
SSx

+
96

α
SLLx − 12

α
L2Cx +

48

α
L2Sx +

288

α
L3Lx +

1

α
Cxxx − 4

α
Sxxx

−24

α
LLxxx − 72

α
LxLxx = 0, (18)

To eliminate L, by using the relations (13), and by the equation (16) then, L2Cx − L2Sx = 0
and LSxx − LCxx = 0. And by using (14), then the equation (18), becomes:

Ct + Cxxx + 2CxS + CCx = 0, (19)

By comparing the equations (14) with (19), and using the equation (16), we get:

Ct = St, (20)

Then by the equations (16) and (20), we get, C = S +K where K is constant.
For K = 0, we get:

C = S, (21)

By substituting C = S into the equation (14), we get:

St + 3SSx + Sxxx = 0, (22)

This is Korteweg-de Vries like equation (KdV).

4. Exact solution

Solution for constant S.
The constant functions S = ±2λ2 where λ is constant, are solutions of the KdV like equation (22).

Lemma 4.1 [1] Let ψ1 and ψ2 be two linearly independent solutions of the equation,

d2ψ

dz2
+ P (z) = 0, (23)

which are defined and holomorphic on some simply connected domain D in complex plane, then
W (z) = ψ1(z)/ψ2(z) satisfies the equation,

{W,Z} = 2P (z), (24)

Conversely, if W(z) is a solution of (24) at all point of D, then one can find two linearly holomorphic
independent solutions ψ1 and ψ2 of (23) such that W (z) = ψ1(z)/ψ2(z) in some neighborhood of z0 ∈ D.

Lemma 4.2 [3] The Schwartzian derivative is invariant under fractional linear transformation acting on
the first argument, namely,{
aW + b

cW + d
; z

}
= {W ; z} where ad− bc 6= 0,

where a, b, c and d are constants.
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Case A:

For S = −2λ2, we have, S = {φ, x} = −2λ2.
Hence P (x) = −λ2 in (24), and two linearly independent solutions are:

Ψ1 = E(t)eλx + F (t)e−λx , Ψ2 = G(t)eλx +H(t)e−λx

Therefore by Lemma 4.1 and Lemma 4.2, we obtain:

φ(t, x) =
E(t)eλx + F (t)e−λx

G(t)eλx +H(t)e−λx
where EH − FG 6= 0, (25)

By using the equations (11) and (21), then:

C = S = − φt
φx

= −2λ2, (26)

Now, to find the equation of coefficients E(t), F (t), G(t) and H(t), we derive φ(t, x) in the equation (25),
once respect to t and once respect to x and substituting them into the equation(26), we obtain:

φt =
[G(t)E

′
(t)− E(t)G

′
(t)]e2λx + [H(t)F

′
(t)− F (t)H

′
(t)]e−2λx

[G(t)eλx +H(t)e−λx]
2

+
G(t)F

′
(t)− F (t)G

′
(t) +H(t)E

′
(t)− E(t)H

′
(t)

[G(t)eλx +H(t)e−λx]
2 ,

and,

φx =
2λ[H(t)E(t)−G(t)F (t)]

[G(t)eλx +H(t)e−λx]2
,

Then, the equation (26) becomes:

C =
[G(t)E

′
(t)− E(t)G

′
(t)]e2λx + [H(t)F

′
(t)− F (t)H

′
(t)]e−2λx

−2λ[H(t)E(t)−G(t)F (t)]

+
G(t)F

′
(t)− F (t)G

′
(t) +H(t)E

′
(t)− E(t)H

′
(t)

−2λ[H(t)E(t)−G(t)F (t)]
= −2λ2.

Then,

(G(t)E
′
(t)− E(t)G

′
(t))e2λx + (H(t)F

′
(t)− F (t)H

′
(t))e−2λx +G(t)F

′
(t)

−F (t)G
′
(t) +H(t)E

′
(t)− E(t)H

′
(t) = 4λ3(H(t)E(t)−G(t)F (t)).

This leads to a system of nonlinear ordinary differential equation in coefficients E(t), F (t), G(t) and H(t),
then:

(I) GE
′
− EG

′
= 0

(II) HF
′
− FH

′
= 0

(III) (GF
′
− FG

′
) + (HE

′
− EH

′
) = 4λ3(HE −GF )

Particular solutions of (I) and (II) are:

E(t) = AG(t) and F (t) = BH(t)

where A and B are real arbitrary constants. By substituting these into (III), we get:

B(G(t)H
′
(t)−H(t)G

′
(t)) +A(H(t)G

′
(t)−G(t)H

′
(t)) = 4λ3H(t)G(t)(A−B),

then:

H
′
(t)

H(t)
− G

′
(t)

G(t)
= −4λ3,
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By integrating the above, we get:

H(t)

G(t)
= exp(−4λ3t),

Then the equation (25), becomes:

φ(t, x) =
AG(t) exp(λx) +BG(t) exp(−4λ3t− λx)

G(t) exp(λx) +G(t) exp(−4λ3t− λx)
,

Which leads to:

φ(t, x) =
Aeλξ1 +Be−λξ1

eλξ1 + e−λξ1
, where ξ1 = x+ 2λ2t

=
(A+B) coshλξ1 + (A−B) sinhλξ1

2 coshλξ1

Then:

φ(t, x) = K1 +K2 tanhλξ1, (27)

where K1 and K2 are arbitrary constants, and K1 = (A + B)/2 and K2 = (A − B)/2. For K1 = 0, and by
substituting the equation (27) into the equation (5), we obtain:

u2 = − 1

α

2K2λ
3sech2λξ1

K2λsech
2λξ1

− 4

α

−2K2λ
3sech4λξ1 + 4K2λ

3sech2λξ1tanh
2λξ1

K2λsech
2λξ1

+
3

α

4K2
2λ

4sech4λξ1tanh
2λξ1

K2
2λ

2sech4λξ1

Then:

u2 =
12λ2

α

(
sech2λξ1 −

1

2

)
, where ξ1 = x+ 2λ2t,

Hence u2(t, x) is the first exact solution for KdV equation (1). Now, by the equations (3), (4), (6) and (27), we
obtain:

u =
−12

α

φ2x
φ2

+
12

α

φxx
φ

+ u2,

=
−12

α

K2
2λ

2sech4λξ1

K2
2 tanh

2λξ1
− 24

α

K2λ
2sech2λξ1tanhλξ1
K2tanhλξ1

+ u2,

Then:

u = −12λ2

α

(
csech2λξ1 +

1

2

)
, where ξ1 = x+ 2λ2t,

Hence u(t, x) is the second exact solution for KdV equation (1).

Case B:

For S = 2λ2, we have: S = {φ, x} = 2λ2.
Hence P (x) = −λ2 in (24), and two linearly independent solutions are:

Ψ3 = E(t)eλix + F (t)e−λix , Ψ4 = G(t)eλix +H(t)e−λix

Therefore, from Lemma 4.1 and Lemma 4.2, one obtains:

φ(t, x) =
E(t)eλix + F (t)e−λix

G(t)eλix +H(t)e−λix
where EH − FG 6= 0, (28)
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By using the equations (11) and (21), then:

C = S = − φt
φx

= 2λ2. (29)

Now to find the equation of coefficients E(t), F (t), G(t) and H(t), we derive φ(t, x) in the equation (28),
once respect to t and once respect to x and by substituting them into the equation(29), we obtain:

C =
[G(t)E

′
(t)− E(t)G

′
(t)]e2λix + [H(t)F

′
(t)− F (t)H

′
(t)]e−2λix

−2iλ[H(t)E(t)−G(t)F (t)]

+
G(t)F

′
(t)− F (t)G

′
(t) +H(t)E

′
(t)− E(t)H

′
(t)

−2iλ[H(t)E(t)−G(t)F (t)]
= 2λ2.

This leads to a system of nonlinear ordinary differential equations with coefficients E(t), F (t), G(t) and H(t), then:

(I) GE
′
− EG

′
= 0,

(II) HF
′
− FH

′
= 0,

(III) GF
′
− FG

′
) + (HE

′
− EH

′
) = −4iλ3(HE −GF ),

Particular solutions of (I) and (II) are:

E(t) =MG(t) and F (t) = NH(t)

where M and N are real arbitrary constants. By substituting these into (III), we get:

H(t)

G(t)
= exp(4iλ3t),

Then the equation (28), becomes:

φ(t, x) =
MG(t) exp(λix) +NG(t) exp(4λ3it− λix)

G(t) exp(λix) +G(t) exp(4λ3it− λix)
,

Which leads to:

φ(t, x) =
Meλiξ2 +Ne−λiξ2

eλiξ2 + e−λiξ2
, where ξ2 = x− 2λ2t

=
(M +N) cosλξ2 + (M −N) sinλξ2

2 cosλξ2

Then:

φ(t, x) = K3 +K4 tanλξ2, (30)

where K3 = (M +N)/2 and K4 = (M −N)/2 are arbitrary constants. For K3 = 0, by substituting the equation
(30) into the equation (5), we get:

û2 =
2

α

K4λ
3sec2λξ2

K4λsec2λξ2
− 4

α

2K4λ
3sec4λξ2 + 4K4λ

3sec2λξ2tan
2λξ2

K4λsec2λξ2

+
3

α

4K2
4λ

4sec4λξ2tan
2λξ2

K2
4λ

2sec4λξ2
,

Then:

û2 = −12λ2

α

(
sec2λξ2 −

1

2

)
, where ξ2 = x− 2λ2t.

Hence û2(t, x) is the third exact solution for KdV equation (1). Now, by the equations (3), (4), (6) and (30),
we get:

û =
−12

α

φ2x
φ2

+
12

α

φxx
φ

+ û2.

Then:

û = −12λ2

α

(
csec2λξ2 −

1

2

)
, where ξ2 = x− 2λ2t.

Hence û(t, x) is the fourth exact solution for KdV equation (1).
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differential equations, master thesis, Mathematical and Computer Sciences, Golden School, Colorado, USA, (2004).

[5] K. Brauer, The KdV equation: History, exact solutions, and graphical representation, University of Osnabrück, Applied
Systems Science, Germany, (2006).

[6] W. Hereman, ”Shallow water waves and solitary waves”, Mathematics of Complexity and Dynamical Systems, (2011),
pp.1520-1532.

[7] W. Steep and N. Euler, Nonlinear Evolution Equations and Painlevé Test, World Scientific Publishing Co. Pte. Ltd,
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