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Abstract 

 

Ranked set sampling (RSS) is a statistical technique for data collection that generally leads to more efficient estimators 

than competitors based on simple random sampling (SRS). In the current paper, the estimation of R=P[Y<X] when Y 

and X are two independent Burr type XII distribution with common known shape parameter c will be considered. 

Maximum likelihood estimator is proposed to estimate R based on ranked set sampling data. These estimators will be 

compared in terms of their biases, mean square errors and efficiencies with known estimators based on SRS data. It is 

shown that the estimators based on RSS are more efficient than the corresponding SRS. The results are illustrated using 

simulated data. 
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1. Introduction 

Burr [5] introduced twelve different forms of cumulative distribution functions which might be useful for fitting data, 

among those distributions Burr type XII, denoted by Burr (𝑐, 𝑏). The cumulative distribution function for Burr (𝑐, 𝑏) is 

given as 

𝐹(𝑥; 𝑐, 𝑏) = 1 − (1 + 𝑥𝑐)−𝑏 , 𝑥 > 0, 𝑐 > 0, 𝑏 > 0,                                                                                                           (1) 

where 𝑐 and 𝑏 are shape parameters. 

The corresponding probability density function (𝑝𝑑𝑓) is given by  

𝑓(𝑥; 𝑐, 𝑏) = b𝑐𝑥𝑐−1(1 + 𝑥𝑐)−(𝑏+1), 𝑥 > 0, 𝑐 > 0, 𝑏 > 0.                                                                                                 (2) 

The density (2) is unimodel at 𝑥 = ((𝑐 − 1)/(𝑏𝑐 + 1)1/2) ). 
RSS was proposed by McIntrye [2],  he noted that in many situations, there is enough information available to enable 

sampling units to be ranked according to the variable of interest, but actually not measuring (quantifying) the units with 

respect to the variable of interest. The ranking may be done on the basis of visual inspection, or any prior information. 

The RSS method can be summarized as follows: 

Step 1: Randomly select n
2
 units from the target population. 

Step 2: Allocate the n
2
 selected units as randomly as possible into n sets, each of size n. 

(

𝑥11 𝑥12 …    𝑥1𝑛

⋮ ⋮ …       ⋮   
𝑥𝑛1 𝑥𝑛2 …    𝑥𝑛𝑛

)  

Step 3: Without taking any measurements, rank units within each raw based on a criterion chosen by the researcher. 

The result with one cycle can be represented as: 

(

𝑥1(1) 𝑥1(2) …    𝑥1(𝑛)

⋮ ⋮ …       ⋮   
𝑥𝑛(1) 𝑥𝑛(2) …    𝑥𝑛(𝑛)

)  

Step 4: Choose a sample for actual quantification by including the smallest ranked unit in the first set, the second 

smallest ranked unit in the second set, the process is continues in this way until the largest ranked unit is selected from 

the last set. 

http://creativecommons.org/licenses/by/3.0/
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Step 5: Repeat steps 1 through 4 for r cycles to obtain a sample of size nr. 

Takahasi and Wakimato [7] showed that RSS mean is an unbiased estimator for the population mean with smaller 

variance compared to the SRS mean. Dell and Clutter [11] showed that the mean of the RSS is an unbiased estimator of 

the population mean whether the ranking is perfect or not. Shen [13] explored the concept of RSS for the problem of 

estimation of a lognormal mean with a known coefficient of variation, and show that the use of RSS and its suitable 

modifications results is much improved estimators compared to the use of a SRS.  

The estimation problem of  𝑃(𝑌 < 𝑋) has attracted the attention of many authors. This model first considered by 

Birnbaum [15]. The formal term stress-strength appeared in the title of Church and Harris [6].  The theoretical and 

practical results on the theory and applications of the stress-strength relationships in industrial and economic systems 

during the last decades are collected in Kotz et al. [9].  

Awad and Charraf [1] provided a simulation study which compared three estimators for 𝑅 = 𝑃(𝑌 < 𝑋) when 𝑌 and 𝑋 

are two independent but not identically distributed Burr random variables. These estimators are the minimum variance 

unbiased, maximum likelihood and Bayes. Panahi and Asadi [4] considered the estimation of 𝑃(𝑌 < 𝑋) when 𝑋 and 𝑌 

are independent identically random variables of Burr Type XII distribution with two parameters. They discussed the 

maximum likelihood estimator of R based on one simple iterative procedure assuming that the common parameter is 

known. They also, obtained the uniform minimum variance unbiased estimator (UMVUE) and Bayes estimator of R. 

Recently, Sengupta and Mukhuti [10] considered the estimation problem of 𝑅 based on RSS, they compared the ranked 

set sampling with simple random sampling in terms of the variance of the unbiased estimator of 𝑃(𝑌 < 𝑋). They proved 

that the unbiased estimator based on RSS data has a smaller variance compared with the unbiased estimator based on 

SRS, even when the rankings of RSS are imperfect. Muttlak et al. [3] considered the problem of estimating 𝑃(𝑌 < 𝑋), 

where 𝑋  and 𝑌  are independently exponentially distributed random variables with different scale parameters using 

ranked set sampling data. Abu Dieh et al. [12] introduced estimation of reliability 𝑅 based on data collected via RSS 

technique in case of normal distribution with concomitant variable. Dong et al. [14] considered the problem of 

estimating the reliability estimation 𝑃(𝑌 < 𝑋)  for a system when strength 𝑋  and stress Y follow exponential 

distribution. They presented the best linear unbiased estimator and the modified maximum likelihood estimator based 

on ranked set sampling with unequal sampling. Hussian [8] discussed the problem of estimating R for generalized 

inverted exponential distribution based on RSS and SRS.   

The main aim of this study is to focus on the estimation problem of  𝑃(𝑌 < 𝑋) , where 𝑋~Burr (𝑐, 𝑏) and 

𝑌~Burr (𝑐, 𝑎) and they are independently distributed. The maximum likelihood estimator (MLE) and uniformly 

minimum variance unbiased estimator of R using SRS will be considered. MLE based on RSS will be derived. 

Simulation study is performed to compare different estimators. 

The rest of the article is organized as follows. In Section 2, MLE and UMVUE of 𝑅 are discussed. In Section 3,  

MLE of R based on RSS are obtained. Numerical study is presented in Section 4. Finally conclusions are presented in 

Section 5.  

2. Methods of estimation of parameters in 𝐑 based on SRS 
 

In this section, MLE and UMVUE of reliability 𝑅 will be considered. Let 𝑋~Burr (𝑐, 𝑏) and 𝑌~Burr (𝑐, 𝑎) are two 

independent Burr type XII random variables, then it can be easily seen (see Awad and Charraf [1], and Panahi and 

Asadi [4]) that:  

𝑅 = 𝑃(𝑌 < 𝑋) = ∫ ∫ 𝑏𝑐𝑥𝑐−1(1 + 𝑥𝑐)−(𝑏+1)𝑎𝑐𝑦𝑐−1(1 + 𝑦𝑐)−(𝑎+1)𝑑𝑦
𝑥

0
𝑑𝑥 =

𝑎

𝑎+𝑏
=

1

1+𝜌

∞

0
                                            (3)                

where 𝜌 =
𝑏

𝑎
. 

To compute the point estimator of R, then firstly it must obtain the point estimator of unknown parameters 𝑏 and 𝑎. In 

the following subsection some point estimators of 𝑅 namely, 𝑀𝐿𝐸 and 𝑈𝑀𝑉𝑈𝐸 will be obtained. 
 

2.1. Maximum likelihood estimator 
 

To compute the MLE of 𝑅, the MLEs of 𝑏 and 𝑎 must be computed firstly. Let 𝑋1, … , 𝑋𝑝 be a SRS from Burr (𝑐, 𝑏) and 

𝑌1, … , 𝑌𝑞  be a SRS from Burr (𝑐, 𝑎) therefore the log-likelihood function denoted by 𝑙 for the observed sample is given 

as follows:  

𝑙 = 𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 + (𝑝 + 𝑞)𝑙𝑛𝑐 + (𝑐 − 1)[∑ 𝑙𝑛𝑥𝑖 + ∑ 𝑙𝑛𝑦𝑗
𝑞
𝑗=1

𝑝
𝑖=1 ] − (𝑏 + 1) ∑ 𝑙𝑛(1 + 𝑥𝑖

𝑐 ) − (𝑎 + 1) ∑ 𝑙𝑛(1 + 𝑦𝑗
𝑐 ).

𝑞
𝑗=1

𝑝
𝑖=1           (4)                                                                                                                                                                                 

The MLEs of 𝑏 and 𝑎 denoted by  �̂�𝑀𝐿𝐸 , �̂�𝑀𝐿𝐸 can be obtained as the solutions of: 
𝜕𝑙

𝜕𝑏
=

𝑝

�̂�𝑀𝐿𝐸
− ∑ 𝑙𝑛(1 + 𝑥𝑖

𝑐 )𝑝
𝑖=1 = 0,                                                                                                                                    (5) 

𝜕𝑙

𝜕𝑎
=

𝑞

�̂�𝑀𝐿𝐸
− ∑ 𝑙𝑛(1 + 𝑦𝑗

𝑐 )
𝑞
𝑗=1 = 0.                                                                                                                                   (6) 

From (5) and (6), the MLEs of 𝑏 and 𝑎, when c is known take the following forms: 

�̂�𝑀𝐿𝐸 =
𝑝

∑ 𝑙𝑛(1+𝑥𝑖
𝑐 )

𝑝
𝑖=1

,                                                                                                                                                          (7) 

�̂�𝑀𝐿𝐸 =
𝑞

∑ 𝑙𝑛(1+𝑦𝑗
𝑐 )

𝑞
𝑗=1

.                                                                                                                                                         (8) 
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Once the MLEs of 𝑏 and 𝑎 are obtained from (7) and (8) respectively, therefore, the MLE of R using SRS is given by   

�̂�𝑀𝐿𝐸 =
1

1+�̂�𝑀𝐿𝐸
 ,                                                                                                                                                                 (9) 

where �̂�𝑀𝐿𝐸 =
�̂�𝑀𝐿𝐸

�̂�𝑀𝐿𝐸
. (see Awad and Charraf [1], and Panahi and Asadi [4]). 

 

2.2. Uniformly minimum variance unbiased estimator 
 

To obtain UMVUE of R let ( ∑ 𝑙𝑛(1 + 𝑥𝑖
𝑐 )𝑝

𝑖=1 , ∑ 𝑙𝑛(1 + 𝑦𝑗
𝑐 )

𝑞
𝑗=1 ) is a jointly sufficient statistic for (𝑏, 𝑎), assuming 

that the common parameter c is known, then the UMVUE will be as follows: 

�̂�𝑈𝑀𝑉𝑈𝐸 = ∑ (−1)𝑖 (𝑞−1)!(𝑝−1)!

(𝑞+𝑖−1)!(𝑝−𝑖−1)! 
(

𝑇2

𝑇1
)

𝑖

  𝑖𝑓 𝑇2 ≤ 𝑇1,
𝑝−1
𝑖=0                                                                                                 (10) 

or 

�̂�𝑈𝑀𝑉𝑈𝐸 = 1 − ∑ (−1)𝑖 (𝑞−1)!(𝑝−1)!

(𝑞−𝑖−1)!(𝑝+𝑖−1)! 
(

𝑇1

𝑇2
)

𝑖

  𝑖𝑓 𝑇2 > 𝑇1,
𝑞−1
𝑖=0                                                                                          (11) 

where 𝑇1 = ∑ 𝑙𝑛(1 + 𝑥𝑖
𝑐 )𝑝

𝑖=1  and 𝑇2 = ∑ 𝑙𝑛(1 + 𝑦𝑗
𝑐 )

𝑞
𝑗=1 . (see Awad and Charraf [1], and Panahi and Asadi [4]). 

3. Estimating 𝐑 = 𝐏(𝐘 < 𝑿) using RSS 
 

This section deals with estimation of reliability 𝑅 using RSS, this approach to data collecting enables one to provide 

more structural to the collected sample items, and use this structure to develop efficient inferential procedures. MLE 

will be used to estimate the reliability 𝑅 = 𝑃(𝑌 < 𝑋). Let 𝑋(1:𝑛)𝑠, 𝑋(2:𝑛)𝑠, … , 𝑋(𝑛:𝑛)𝑠 for 𝑖 = 1, . . , 𝑛 and 𝑠 = 1, … , 𝑟 is a 

RSS from Burr (𝑐, 𝑏), with sample size 𝑝 = 𝑛𝑟, where 𝑛 is the set size and 𝑟 is the number of cycles. To simplify the 

notation, denote 𝑋(𝑖:𝑛)𝑠 by 𝑋𝑖𝑠,  under the perfect judgment ranking, 𝑋𝑖𝑠 follows the same distribution as 𝑋(𝑖:𝑛)𝑠,  then for 

fixed 𝑟, 𝑋𝑖𝑠 are independent with 𝑝𝑑𝑓 given by: 

𝑓𝑖(𝑥𝑖𝑠) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
[𝐹(𝑥𝑖𝑠)]𝑖−1[1 − 𝐹(𝑥𝑖𝑠)]𝑛−𝑖𝑓(𝑥𝑖𝑠),           𝑥𝑖𝑠 > 0.                                                                            (12) 

Similarly, let 𝑌(1:𝑚)𝑠, 𝑌(2:𝑚)𝑠, … , 𝑦(𝑚:𝑚)𝑠  for 𝑗 = 1, . . , 𝑚  and 𝑠 = 1, … , 𝑟  is a RSS from Burr(𝑐, 𝑎) , with sample size 

 𝑞 = 𝑚𝑟, where 𝑚  is the set size. To simplify the notation, denote 𝑌(𝑗:𝑚)𝑠 by 𝑌𝑗𝑠.  Under the perfect judgment ranking, 

𝑌𝑗𝑠 follows the same distribution as  𝑌(𝑗:𝑚)𝑠, then for fixed 𝑟, 𝑌𝑗𝑠 are independent with 𝑝𝑑𝑓 given by: 

𝑓𝑗(𝑦𝑗𝑠 ) =
𝑚!

(𝑗−1)!(𝑚−𝑗)!
[𝐹(𝑦𝑗𝑠 )]

𝑗−1
[1 − 𝐹(𝑦𝑗𝑠)]

𝑚−𝑗
𝑓(𝑦𝑗𝑠),         𝑦𝑗𝑠 > 0.                                                                       (13) 

Suppose {𝑋𝑖𝑠, 𝑖 = 1, … , 𝑛; 𝑠 = 1, … , 𝑟} denote the ranked set sample of size 𝑝 = 𝑛𝑟 from Burr (𝑐, 𝑏) , where 𝑛 is the set 

size and 𝑟 is the number of cycles. Then the 𝑝𝑑𝑓 of 𝑥𝑖𝑠 is given by: 

𝑓𝑖(𝑥𝑖𝑠) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝑏𝑐𝑥𝑖𝑠

𝑐−1(1 + 𝑥𝑖𝑠
𝑐 )−[𝑏(𝑛−𝑖+1)+1](1 − (1 + 𝑥𝑖𝑠

𝑐 )−𝑏)𝑖−1.                                                                       (14) 

By similar way, let  {𝑌𝑗𝑠 , 𝑗 = 1, … , 𝑚; 𝑠 = 1, … , 𝑟} denote the ranked set sample of size  𝑞 = 𝑚𝑟 from Burr (𝑐, 𝑎). Then 

the 𝑝𝑑𝑓of 𝑦𝑗𝑠 is given by: 

𝑓𝑗(𝑦𝑗𝑠 ) =
𝑚!

(𝑗−1)!(𝑚−𝑗)!
𝑎𝑐𝑦𝑗𝑠

𝑐−1(1 + 𝑦𝑗𝑠
𝑐 )

−[𝑎(𝑚−𝑗+1)+1]
(1 − (1 + 𝑦𝑗𝑠

𝑐 )
−𝑎

)𝑗−1,                                                                 (15) 

The likelihood function is given by: 

𝐿(𝑐, 𝑏, 𝑎) = ∏ [∏ 𝑓𝑖
(𝑥𝑖𝑠)

𝑛

𝑖=1

∏ 𝑓𝑗 (𝑦𝑗𝑠 )

𝑚

𝑗=1

]

𝑟

𝑠=1

 

                  = ∏ [∏
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
𝑏𝑐𝑥𝑖𝑠

𝑐−1(1 + 𝑥𝑖𝑠
𝑐 )−[𝑏(𝑛−𝑖+1)+1](1 − (1 + 𝑥𝑖𝑠

𝑐 )−𝑏)𝑖−1

𝑛

𝑖=1

𝑟

𝑠=1

∏
𝑚!

(𝑗 − 1)! (𝑚 − 𝑗)!
𝑎𝑐𝑦𝑗𝑠

𝑐−1

𝑚

𝑗=1

 

 × (1 + 𝑦
𝑗𝑠
𝑐 )

−[𝑎(𝑚−𝑗+1)+1]

(1 − (1 + 𝑦𝑗𝑠
𝑐 )

−𝑎
)

𝑗−1

]                                                                                              (16) 

The log-likelihood function (16) denoted by 𝑙 will be as follows: 

𝑙 = ln 𝜉 + 𝑝𝑙𝑛𝑏 + 𝑞𝑙𝑛𝑎 + (𝑐 − 1) ∑ (∑ 𝑙𝑛 𝑥𝑖𝑠
𝑛
𝑖=1 + ∑ 𝑙𝑛𝑦𝑗𝑠

𝑚
𝑗=1 ) − ∑ [∑ [𝑏(𝑛 − 𝑖 + 1) + 1]𝑛

𝑖=1
𝑟
𝑠=1

𝑟
𝑠=1 𝑙𝑛(1 + 𝑥𝑖𝑠

𝑐)  

+∑ [𝑎(𝑚 − 𝑗 + 1) + 1]𝑙𝑛(1 + 𝑦𝑗𝑠
𝑐)𝑚

𝑗=1 ] + ∑ [∑ (𝑖 − 1)𝑛
𝑖=1 𝑙𝑛(1 − (1 + 𝑥𝑖𝑠

𝑐)−𝑏) + ∑ (𝑗 − 1)𝑚
𝑗=1  𝑟

𝑠=1   

× 𝑙𝑛(1 − (1 + 𝑦𝑗𝑠
𝑐)−𝑎)]                                                                                                                                                (17) 

where 𝜉 is a constant. The first partial derivatives of log-likelihood function with respect to 𝑏 and 𝑎 are given by: 

 
𝜕 𝑙

𝜕𝑏
=

𝑝

�̃�𝑀𝐿𝐸 
− ∑ [∑ (𝑛 − 𝑖 + 1)ln(1 + 𝑥𝑖𝑠

𝑐 ) − ∑ (𝑖 − 1)
ln(1+𝑥𝑖𝑠

𝑐 )

(1+𝑥𝑖𝑠
𝑐 )

�̃�𝑀𝐿𝐸  
−1

𝑛
𝑖=1

𝑛
𝑖=1 ] = 0,𝑟

𝑠=1                                                    (18)                                                           

𝜕 𝑙

𝜕𝑎
=

𝑞

�̃�𝑀𝐿𝐸
− ∑ [∑ (𝑚 − 𝑗 + 1) ln(1 + 𝑦𝑗𝑠

𝑐 ) − ∑ (𝑗 − 1)
ln(1+𝑦𝑗𝑠

𝑐 )

(1+𝑦𝑗𝑠
𝑐 )

�̃�𝑀𝐿𝐸
−1

𝑚
𝑗=1

𝑚
𝑗=1 ]𝑟

𝑠=1 = 0.                                                   (19) 

Clearly, it is not easy to obtain a closed form solution to this system of Equations (18) and (19). Therefore, an iterative 

technique must be applied to solve these equations numerically to obtain an estimates of 𝑏 and 𝑎.  Let the MLEs of 𝑏 
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and 𝑎 denoted by  �̃�𝑀𝐿𝐸  and �̃�𝑀𝐿𝐸  respectively. The MLE estimator �̃�𝑀𝐿𝐸  of 𝑅 using RSS is obtained by substituting 

�̃�𝑀𝐿𝐸  and �̃�𝑀𝐿𝐸  in Equation (3). Then �̃�𝑀𝐿𝐸  will be obtained as follows: 

�̃�𝑀𝐿𝐸 =
1

1+�̃�𝑀𝐿𝐸
 ,                                                                                                                                                               (20) 

where �̃�𝑀𝐿𝐸 =
�̃�𝑀𝐿𝐸

�̃�𝑀𝐿𝐸
. 

4. Numerical illustration  

In this study, the problem of estimating P(Y < 𝑋) has been addressed for Burr type XII distribution based on SRS and 

RSS. Simulation study is carried out to compare the estimators of R, �̃�𝑀𝐿𝐸based on RSS to the estimators based on SRS 

data �̂�𝑀𝐿𝐸 and �̂�𝑈𝑀𝑉𝑈𝐸. Performance of estimators is evaluated through their biases, mean square errors (MSEs) and 

efficiencies. The simulation procedures are described through the following steps:  

Step (1): Generate 1000 simple random samples of 𝑥1, 𝑥2, … , 𝑥𝑝 and 𝑦1, 𝑦2, … , 𝑦𝑞  from Burr type XII distribution  

with sample sizes{(𝑛, 𝑚) = (30,30), (40,40), (50,50), (60,60), (30,40), (30,50)(30,60), (40,50), (40,60), (50,60), 
, (40,30), (50,30)(50,40), (60,30), (60,40), (60,50)}. 
Step (2): Generate 1000 simple random samples of 𝑥11, … , 𝑥𝑛𝑟  and 𝑦11, … , 𝑦𝑚𝑟  from Burr XII distribution with set sizes 

𝑛 = 3,4,5,6 , 𝑚 = 3,4,5,6 and number of cycles 𝑟 = 10.  

Step (3): Without loss of generality the common parameter c will be assumed to be equal one in all the experiments. 

The ratio 𝜌 is selected as follows  {0.1,0.5,1,2 and 6}. 
Step (4): The biases, MSEs and efficiencies of estimators, namely {�̃�𝑀𝐿𝐸  , �̂�𝑈𝑀𝑉𝑈𝐸 and �̂�𝑀𝐿𝐸} based on RSS and SRS 

are obtained. The efficiencies of the estimators with respect to �̂�𝑀𝐿𝐸 will be defined as follows 

𝑒𝑓𝑓(1) =
�̂�𝑀𝐿𝐸 

�̂�𝑈𝑀𝑉𝑈𝐸
     and   𝑒𝑓𝑓(2) =

�̂�𝑀𝐿𝐸 

�̃�𝑀𝐿𝐸
.  

The simulation results are reported in Tables 1 to 3 and represented in Figures 1 to 5, the following conclusions can be 

observed:  

1) The biases of all estimators �̃�𝑀𝐿𝐸 , �̂�𝑈𝑀𝑉𝑈𝐸 and �̂�𝑀𝐿𝐸  are very small.  

2) In all cases, MSEs of �̂�𝑈𝑀𝑉𝑈𝐸  and �̂�𝑀𝐿𝐸 based on SRS data are greater than MSE of �̃�𝑀𝐿𝐸 based on RSS data. 

(For example see Figure (1)). 

3) In almost all cases, MSEs decrease as the set size increase. (For example see Figure (1)). 

4)  MSEs of all estimators �̃�𝑀𝐿𝐸 , �̂�𝑈𝑀𝑉𝑈𝐸 and �̂�𝑀𝐿𝐸 increase as the value of 𝜌 increases up to 𝜌 = 1 and then MSEs 

decrease as the value of 𝜌 increases. (For example see Figure (2)). 
 

  

Fig. 1: MSEs for estimators �̃�𝑀𝐿𝐸  , �̂�𝑈𝑀𝑉𝑈𝐸 and �̂�𝑀𝐿𝐸 for, 𝜌 = 1 
Fig. 2: MSEs for estimators �̃�𝑀𝐿𝐸  , �̂�𝑈𝑀𝑉𝑈𝐸 and �̂�𝑀𝐿𝐸 for, (𝑛, 𝑚) = (6,6) 

and different values of 𝜌 
 

 

5) From Figure (2), it is observed that, the MSEs of all estimators have the smallest value when the value of 

 𝜌 = 0.1, while the MSEs of all estimators have the largest value when the value of 𝜌 = 1.  

6) Efficiencies of 𝑅 based on RSS data with respect to SRS data are greater than one in all cases.  

7) In case of 𝑛 = 𝑚, the efficiency of 𝑅 based on RSS data with respect to SRS data is increasing as 𝑛 and 𝑚 are 

increasing for the same value of 𝜌. (For example see Figure (3)). 

 
 

 
Fig. 3: Efficiencies for estimators �̃�𝑀𝐿𝐸  , �̂�𝑈𝑀𝑉𝑈𝐸 with respect to �̂�𝑀𝐿𝐸 for 𝜌 = 1 
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8) In case of 𝑛 < 𝑚 and if 𝑛 remains fixed (𝑛 = 3), the efficiency of 𝑅 based on RSS data with respect to SRS data 

is increasing as 𝑚 increases for the same value of 𝜌. (For example see Figure (4)). 

9) In case of 𝑛 > 𝑚 and if 𝑛 remains fixed (𝑛 = 6), the efficiency of 𝑅 based on RSS data with respect to SRS data 

is increasing as 𝑚 increases for the same value of 𝜌. (For example see Figure (5)). 

 

  
Fig. 4: The efficiencies of estimators �̃�𝑀𝐿𝐸  , �̂�𝑈𝑀𝑉𝑈𝐸 with respect to �̂�𝑀𝐿𝐸 

when 𝑛 < 𝑚 and 𝜌 = 1. 
Fig. 5: The efficiencies of estimators �̃�𝑀𝐿𝐸  , �̂�𝑈𝑀𝑉𝑈𝐸  with respect 

to �̂�𝑀𝐿𝐸 when  𝑛 > 𝑚 and 𝜌 = 1. 

 

10) In almost all cases of equal set size, i.e. , (𝑛 = 𝑚), the efficiency of �̂�𝑈𝑀𝑉𝑈𝐸  with respect to �̂�𝑀𝐿𝐸 is greater than 

one at the values of 𝜌 = 0.1 and 6, otherwise it is less than one . 

11) In case of (𝑛 ≠ 𝑚), the efficiency of �̂�𝑈𝑀𝑉𝑈𝐸  with respect to �̂�𝑀𝐿𝐸 is greater than one in almost all cases. 

12) �̃�𝑀𝐿𝐸 based on RSS data is more efficient than �̂�𝑀𝐿𝐸 based on SRS in all cases. 

13) �̃�𝑀𝐿𝐸 based on RSS data is more efficient than �̂�𝑈𝑀𝑉𝑈𝐸 based on SRS in all cases. 

5. Conclusions 

This article deals with the estimation problem of  𝑃(𝑌 < 𝑋) when  𝑋 and 𝑌  are assumed to follow Burr type XII 

distribution with parameters (𝑐, 𝑏) and (𝑐, 𝑎) respectively. In case of SRS and RSS, the performance of the estimators 

�̃�𝑀𝐿𝐸 , �̂�𝑈𝑀𝑉𝑈𝐸 and �̂�𝑀𝐿𝐸 is investigated using the biases, MSEs and efficiencies.  

From the simulation study, it is observed that, MSEs of all estimates decrease as the sample size increases in almost all 

cases. Based on RSS data  �̃�𝑀𝐿𝐸 has the smallest MSEs compared with the other methods of estimation  �̂�𝑀𝐿𝐸  and 

�̂�𝑈𝑀𝑉𝑈𝐸 based on SRS data. In all cases the efficiency of estimating 𝑅 based on RSS data is greater than the efficiency 

of estimating 𝑅 based on SRS data. This study revealed that the estimators based on RSS approach are more efficient 

than the corresponding SRS.  

 
Table 1: Biases, MSEs and Efficiencies for the Estimators R̂MLE, R̂UMVUE and R̃MLE Based on SRS and RSS when 𝑛 = 𝑚. 

eff(2) eff(1) MSE(R̃MLE) 
MSE 

(R̂UMVUE) 
MSE (R̂MLE) Bias(R̃MLE) Bias(R̂UMVUE) Bias (R̂MLE) (p, q) m n ρ 

1.912 1.043 0.00026 0.00047 0.00050 -0.00109 -0.00064 -0.00294 (30,30) 3 3 

0.1 
2.303 1.098 0.00015 0.00031 0.00035 -0.00093 0.00016 -0.00229 (40,40) 4 4 
2.536 1.080 0.00010 0.00026 0.00027 -0.00074 -0.00087 -0.00048 (50,50) 5 5 
2.913 1.022 0.00008 0.00022 0.00023 -0.00010 0.00048 -0.00143 (60,60) 6 6 
1.806 0.981 0.00181 0.00334 0.00328 -0.00090 -0.00418 -0.00418 (30,30) 3 3 

0.5 
2.211 0.986 0.00107 0.00240 0.00237 -0.00131 -0.00165 -0.00348 (40,40) 4 4 
2.506 0.984 0.00076 0.00194 0.00191 -0.00117 -0.00081 0.00081 (50,50) 5 5 
3.113 1.468 0.00053 0.00161 0.00167 -0.00133 0.00126 -0.00116 (60,60) 6 6 
1.772 0.966 0.00228 0.00418 0.00404 0.00050 -0.00200 -0.00197 (30,30) 3 3 

1 
2.282 0.973 0.00134 0.00301 0.00293 -0.00058 -0.00256 -0.00194 (40,40) 4 4 
2.519 0.977 0.00096 0.00247 0.00242 -0.00067 0.00230 0.00253 (50,50) 5 5 
3.114 1.069 0.00070 0.00204 0.00218 -0.000003 0.00137 0.00027 (60,60) 6 6 
1.764 0.975 0.00182 0.00329 0.00321 0.00180 -0.00182 0.00064 (30,30) 3 3 

2 
2.177 0.981 0.00106 0.00236 0.00232 0.00028 0.00184 0.000009 (40,40) 4 4 
2.559 0.989 0.00076 0.00197 0.00195 -0.00284 0.00224 0.00370 (50,50) 5 5 
3.076 1.028 0.00054 0.00161 0.00166 0.00011 0.00118 -0.00014 (60,60) 6 6 
1.787 1.015 0.00057 0.00101 0.00102 0.00186 -0.00102 0.00190 (30,30) 3 3 

6 
2.201 1.008 0.00032 0.00071 0.00072 0.00066 -0.00108 0.00111 (40,40) 4 4 
2.640 1.021 0.00023 0.00060 0.00062 0.00034 0.00121 0.00298 (50,50) 5 5 
3.096 1.042 0.00016 0.00047 0.00049 0.00047 -0.00139 0.00147 (60,60) 6 6 
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Table 2: Biases, MSEs and Efficiencies for the Estimators R̂MLE, R̂UMVUE and R̃MLE Based on SRS and RSS when 𝑛 < 𝑚. 

ρ n m (p, q) 
Bias 

(R̂MLE) 
Bias(R̂UMVUE) Bias(R̃MLE) 

MSE 

(R̂MLE) 

MSE 

(R̂UMVUE) 
MSE(R̃MLE) eff(1) eff(2) 

0.1 

3 4 (30,40) -0.00291 -0.00054 -0.00121 0.00041 0.00038 0.00023 1.054 1.724 
3 5 (30,50) -0.00277 -0.00020 -0.00102 0.00038 0.00034 0.00018 1.092 2.108 

3 6 (30,60) -0.00140 0.00051 -0.00094 0.00037 0.00032 0.00017 1.137 2.146 
4 5 (40,50) -0.00148 0.00064 -0.00091 0.00033 0.00029 0.00013 1.132 2.572 

4 6 (40,60) -0.00188 0.00077 -0.00045 0.00031 0.00026 0.00011 1.174 2.686 

5 6 (50,60) -0.00077 0.00061 -0.00103 0.00025 0.00024 0.00009 1.018 2.783 

0.5 

3 4 (30,40) -0.00476 -0.00171 -0.00142 0.00269 0.00272 0.00164 0.987 1.637 

3 5 (30,50) -0.00425 -0.00081 -0.00351 0.00244 0.00246 0.00192 0.989 1.895 

3 6 (30,60) -0.00092 -0.00045 -0.00119 0.00253 0.00246 0.00122 1.025 2.078 
4 5 (40,50) 0.00146 0.00088 -0.00145 0.00226 0.00231 0.00091 0.979 2.486 

4 6 (40,60) -0.00264 -0.00021 -0.00031 0.00215 0.00213 0.00082 1.006 2.603 

5 6 (50,60) -0.00151 0.00159 -0.00074 0.00182 0.00177 0.00066 1.023 2.748 

1 

3 4 (30,40) -0.00312 -0.00212 -0.00021 0.00330 0.00339 0.00206 0.971 1.601 

3 5 (30,50) -0.00274 -0.00111 -0.00288 0.00302 0.00310 0.00160 0.974 1.889 

3 6 (30,60) 0.00108 -0.00056 -0.00031 0.00318 0.00309 0.00153 1.028 2.069 
4 5 (40,50) 0.00025 0.00088 -0.00086 0.00283 0.00288 0.00114 0.980 2.468 

4 6 (40,60) -0.00117 0.00200 0.00034 0.00269 0.00245 0.00104 1.097 2.590 

5 6 (50,60) 0.00104 0.00176 -0.00161 0.00231 0.00226 0.00073 1.022 3.146 

2 

3 4 (30,40) -0.00082 -0.00207 0.00103 0.00259 0.00266 0.00164 0.974 1.582 

3 5 (30,50) -0.00064 -0.00116 -0.00161 0.00239 0.00245 0.00125 0.975 1.907 

3 6 (30,60) 0.00286 -0.00054 0.00063 0.00256 0.00243 0.00122 1.052 2.091 
4 5 (40,50) 0.00190 0.00080 -0.00009 0.00224 0.00227 0.00094 0.983 2.479 

4 6 (40,60) 0.00056 0.00167 0.00092 0.00215 0.00195 0.00082 1.099 2.613 

5 6 (50,60) 0.00230 0.00153 -0.00100 0.00185 0.00179 0.00057 1.030 3.206 

6 

3 4 (30,40) 0.00078 -0.00126 0.00135 0.00080 0.00080 0.00051 0.997 1.579 

3 5 (30,50) 0.00078 -0.00073 -0.00029 0.00075 0.00074 0.00038 1.071 1.960 

3 6 (30,60) 0.00281 -0.00032 0.00093 0.00082 0.00074 0.00038 1.081 2.157 
4 5 (40,50) 0.00212 0.00045 0.00037 0.00070 0.00069 0.00027 1.153 2.529 

4 6 (40,60) 0.00134 0.00086 0.00090 0.00068 0.00060 0.00025 1.326 2.688 

5 6 (50,60) 0.00209 0.00082 0.00122 0.00050 0.00055 0.00017 1.454 2.829 

 
Table 3: Biases, MSEs and Efficiencies for Estimators R̂MLE, R̂UMVUE and R̃MLE Based on SRS and RSS when 𝑛 > 𝑚. 

ρ n m (p, q) 
Bias 

(R̂MLE) 
Bias(R̂UMVUE) Bias(R̃MLE) 

MSE 

(R̂MLE) 

MSE 

(R̂UMVUE) 
MSE(R̃MLE) eff(1) eff(2) 

0.1 

4 3 (40,30) -0.00222 0.00059 -0.00044 0.00041 0.00044 0.00020 0.904 2.041 
5 3 (50,30) -0.00150 -0.00013 -0.00059 0.00038 0.00035 0.00018 1.074 2.116 

5 4 (50,40) -0.00082 0.00067 -0.00096 0.00030 0.00027 0.00013 0.998 2.251 

6 3 (60,30) -0.00030 0.00043 -0.00018 0.00034 0.00032 0.00015 1.043 2.202 
6 4 (60,40) -0.00085 0.00003 0.00018 0.00028 0.00029 0.00011 1.013 2.424 

6 5 (60,50) -0.00103 0.00019 -0.00078 0.00025 0.00027 0.00008 1.107 2.899 

0.5 

4 3 (40,30) -0.00282 0.00042 0.00037 0.00280 0.00300 0.00144 0.933 1.950 
5 3 (50,30) 0.00036 -0.00017 -0.00231 0.00271 0.00025 0.00128 1.066 2.107 

5 4 (50,40) 0.00014 0.00021 -0.00154 0.00214 0.00215 0.00094 1.022 2.264 

6 3 (60,30) -0.00162 0.00020 0.00069 0.00258 0.00215 0.00109 1.033 2.353 
6 4 (60,40) -0.00235 -0.00040 -0.00002 0.00217 0.00212 0.00084 1.080 2.592 

6 5 (60,50) -0.00157 000163 -0.00013 0.00177 0.00173 0.00067 1.039 2.617 

1 

4 3 (40,30) -0.00082 -0.00106 0.00164 0.00352 0.00399 0.00182 0.876 1.926 
5 3 (50,30) 0.00257 -0.00105 0.00122 0.00338 0.00360 0.00155 0.943 2.180 

5 4 (50,40) 0.00169 0.00378 -0.00094 0.00271 0.00282 0.00118 0.960 2.303 

6 3 (60,30) 0.00118 0.00031 0.00161 0.00356 0.00306 0.00151 1.005 2.359 
6 4 (60,40) 0.00111 0.00003 0.00002 0.00280 0.00277 0.00106 1.011 2.595 

6 5 (60,50) -0.00097 0.00023 -0.00002 0.00229 0.00226 0.00081 1.016 2.808 

2 

4 3 (40,30) 0.00137 0.00110 0.00255 0.00284 0.00298 0.00147 0.951 1.932 
5 3 (50,30) 0.00231 0.00356 0.00054 0.00289 0.00278 0.00127 1.038 2.280 

5 4 (50,40) 0.00337 0.00037 -0.00014 0.00202 0.00206 0.00092 0.979 2.370 

6 3 (60,30) 0.00653 -0.00218 0.00120 0.00264 0.00245 0.00107 1.075 2.456 
6 4 (60,40) 0.00141 -0.00333 -0.00051 0.00208 0.00199 0.00082 1.052 2.533 

6 5 (60,50) 0.00298 -0.00099 0.00191 0.00181 0.00178 0.00066 1.012 2.742 

6 

4 3 (40,30) 0.00213 0.00021 0.00211 0.00091 0.00083 0.00046 0.962 1.977 
5 3 (50,30) 0.00355 0.00192 0.00134 0.00088 0.00093 0.00041 0.946 2.143 

5 4 (50,40) 0.00292 0.00028 0.00036 0.00070 0.00076 0.00028 1.043 2.488 

6 3 (60,30) 0.00243 0.00059 0.00184 0.00080 0.00076 0.00035 1.041 2.269 
6 4 (60,40) 0.00248 000079 0.00186 0.00062 0.00064 0.00026 1.241 2.381 

6 5 (60,50) 0.00273 0.00071 0.00055 0.00056 0.00054 0.000194 1.464 2.931 
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