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Abstract

The objective of this paper is to propose a modest numerical error analysis by applying DG finite element method for the parabolic differ-
ential equation. The DG method is an imperative numerical method with much mass compensation and more flexible meshing than other
numerical methods. The DG method starts by discretizing the domain into a set of non-overlapping elements. This study gives a general
introduction and discuss about the discontinuous Galerkin Method of first order parabolic problem. The parabolic problem satisfies the
condition of the existence and uniqueness of DG solution. The main goal of this study is to theoretically explore the convergence of the
solution of the above methods and show the validity of the results.
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1. Introduction

This study provides a theoretical concept to approximate the error of the solutions of a parabolic differential equation. This is focused on
the weak formulation of discontinuous Galerkin (DG) method of the first order parabolic problem. Finite element methods (FEM) have
been proven valuable in the numerical approximation of solutions to self-adjoint or “‘nearly’’ self-adjoint parabolic partial differential
equation (PDE) problems and related indefinite PDE systems or to their parabolic counterparts. Possible reasons for the success of FEM
are their applicability in very general computational geometries of interest and the availability of tools for their rigorous error analysis. The
error analysis is usually based on the variational interpretation of the FEM as a minimization problem over finite-dimensional sets. In 1971,
Reed and Hill [1], proposed a new class of FEM, namely the discontinuous Galerkin finite element method for the numerical solution of
the nuclear transport PDE problem, which contains a linear first-order hyperbolic PDE. DG methods were first proposed and analyzed in
the early 1970s as a technique to numerically solve partial differential equations. The first review of this method was displayed in 1974 by
Lesaint and Raviart [2]. By using stronger stability of DG system, this methods was later scrutinized by Johnson, Navert, and J.Pitk"aranta
[3], and Johnson and J.Pitk aranta [4]. The origin of the DG method for parabolic problems cannot be traced back to a single publication
as features such as jump penalization in the modern nous were advanced progressively. The comprehensive book by Beatrice Riviere [5],
discussed the Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations; covered theory, implementation and other
information. Jan S. Hesthaven and Tim Warburton [6], has been described Nodal Discontinuous Galerkin Methods; Algorithms, Analysis
and also described their applications. P. E. Lewis and J.P. Ward [7], provided a new class of Finite Element Method with its Principles and
Application. D.N. Arnoldis [8], presented an interior penalty finite element method with discontinuous elements. R. Becker, P. Hansho,
and M.G. Larson.[9], discussed about energy norm as well as the posteriori error estimation for discontinuous Galerkin methods. B. Cock-
burn [10], established the Discontinuous Galerkin methods for convection-dominated problems which was existed vast information about
discontinuous Galerkin(DG) FEM. B. Cockburn, G.E. Karniadakis, and, C.-W. Shu (eds.) [11], characterized some key element of discon-
tinuous Galerkin(DG) method with its application. Hailiang Liu, Jue Yan [12, 13], initiated another new technique of Discontinuous Ga-
lerkin named the Direct Discontinuous Galerkin (DDG) method for Diffusion with Interface Corrections. B. Cockburn,G. E. Karniadakis
and C.-W. Shu (eds.) [14] characterized the DG method in the theoretical and computational perception. I. Babu“ska [15] provided partic-
ular evidence to apply the Lagrangian multipliers on the finite element method. S. Brenner and L. Scottfor [16] established the essential
mathematical analysis and theory of finite element method. B. Cockburn, G. Kanschat, and D. Schétzau [17] signified a novel extent of
the DG method by using penalty parameter which is known as the local discontinuous Galerkin (LDG) method.

2. Formulation of the problem
Let Q be a polygonal domain in RY,d = 2 or 3. The side of the boundary 39 of the domain is T. Let n be the unit normal vector to the

1
boundary exterior to Q. For fgiven in L? (Q), g given in Hz(T).
Consider the parabolic problem,
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V.u+ cu = finQ Q)
With the boundary condition:

u=gon'l )
Now, let consider a weight function v. Multiplying (1) by v and integrating over the domain €, to have,

Vou + cw)v = fv

= (V.u)v + cuv = fv
= [, (V.wv + cuv) dx = [, fvdx
= [, V.wvdx+ [, cuvdx = [, fvdx

=Y [, Vwvdx+X [, cuvdx =X [, fvdx 3)
For the proposed DG method, the following DG norm is introduced
lullje = Ch ||u||1215(n) + Chy ||u||1215(n)

Using the divergence theorem on every element integral (as v is now elementwise discontinuous), using the anti-clockwise orientation, to
get:

=2 [y (Vw). W) dx + X [ ((V.u).n)vds + X [, cuvdx = [, fvdx

Where, n = The outward normal to each element edge. Then, introduce a bilinear form B(u,v) as :
B(u,v) = — [, (V.w). W) dx + [ ((V.u).n)vds + [, cuvdx

Therefore, the DG finite element method is defined as

B(u,v) = [, fvdx 4

3. Stability analysis

The following theorem is introduced for the stability analysis of this method.

Theorem: Assume that there exist positive constants A and B such that the solution z satisfies the following bounds.
Buw < Allullfzy + B IIV-ullizq,
Proof: Let, define the bilinear form of the problem:

B(u,v) = — [, ((V.w).Vv)dx + fm((v. w).n)vds+ J,, cuvdx 5)

Putting v = u, to obtain,

B(wu) = — [, ((V.w).Vu)dx + fm((v. w).n)uds + J,, cu® dx (6)
Using Cauchy’s inequality on ((V.u) - n)u, ||[((V.u) - nu|| < ||[(V.u) - n]| - |ju]|

and,

B(u,w) < — [, ((V.w).W)dx + [, ((V.u).n)vds + [, cuvdx @)

Using trace inequality on 274 term of (3.7),
Vu € Py (), Ve c 0Q,

PO N
[[(V.w) - nllzey < Celelz|Q] 2||V.ullpz(qy

Also,
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1
VU € Py (@),Ve © 00, [[ulluze < Cehg? [lullizqey

1

Itis known that, [|v|| 2 = (fﬂ vz)z

“ o ((Vw).Vu) dx = ||V.ullf2q) And, [, cudx = c||ul|{zq,

From the equation (7),

SO S - PO S 2
B(u,u) = —”Vll”fz Q + Ct|e|z|Q| z||V.u||Lz(Q) . Cth 2||u||Lz(Q) + C”u”fz Q < - ”Vu”fz Q + < Ct|e|z|Q| lev.u”LZ(n) +
(©)] Q ()} @2

1 2
1 2 2
Z(cthQZHUHLZ(_Q)) +c ”u”LZ(_Q)

So,

PR S -1\?
B(u,u) < —[IV.ullf2q) {1 — E(CtIeIZIQI 2) }+ lullfzg %(Cth&) +q

1\ 2

If, consider, A = i(cthf) + candB = —(1 — E(Ctleﬁml‘%)Z)
Then from the above equation, it is found that,
=> B(wu) < A ||ullfzq) + BlIV.ullfz(qg )
Hence, this completes the proof.
4. Consistency of the solution
Let consider,
> — fn ((V.w).Vv)dx + faﬂ((V. w).n)vds + fﬂ cuv dx = fﬂ fv dx

= [, ((Vw)- w- cuv)dx+fan ((V.w) - m)vds = [, fvdx

== [, (V) - W= cuv)dx + [, ((V.u) - ng)vds = [ fvdx ©)

Define, ng is the outward normal to E. Sum over all elements, switch to the normal vectors ng,
Yeey [oo(V-W) - ng) vds —Tecga f, (V.u) "ne)vds = Zeer, [, [(V.u) "ne)v]ds

= ket po(V-0)  me) vds = Teen [, (W) "ne) vds + Teer, [, [(V.w) *ne)vlds

By regularity of the solution u,

(V.u) " ng = {(V.u)* ne}

Substituting all of these values in the equation (3.9), to get,

—Ykeey Jo (VW) - W — cuv)dx + Yeean [, (V.u) *ne) vds + Teer, [, {(V.u) "ne)}[v]ds = [, fvdx

Subtract, € Y, cer fe (Vv " ng ) uds from both sides and use the Dirichlet boundary conditionu = gonT,

—Xgee, Jo (V.0 - VW= cuv)dx + Zecon f, (Vw) “ne) vds + Xeer, [, {(V.w) “ne)}[vids—€ Teer [, (Vv -ne)uds=

Jo fvdx—€ TeerJ, (Vv -n.)gds
Finally, it can be said that the jumps [u] = [(V.u) - n, ] are zero that is on the interior edges.
Then, clearly have,

— Xgeen Jy ((V.w) - Vv — cuv)dx = Jo fvdx
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= —Ygee, Jo (Vo) W)dx+ [ cuv = [ fvdx

which immediately yields in the distributional sense, forall E € &,
Vu+cu=f

This proves that the given parabolic problem is consistent.

5. Error analysis

The following theorem is proposed for the error estimate of the problem governed by the equation (1).

Theorem: Let u;, be the DG finite element solution and « be the exact solution of (1) arising from (4).Then there exists a constant C such
that

llu = up 22y < Chllulig
Proof: Bilinear form of the problem be,
B(uv) =—[, ((V.w).vv)dx + fm((V. w.n)vds+ Jo cuvdx (10)

Let, the exact solution of the problem be u and the approximation solution be uy, .
Putting u = uy, in (10),

B(up, v) = = [, ((V.up). W)dx + [, ((V.up).n)vds + [, cupvdx (11)
Now,

B(u,v) — B(up,v) = — f,, ((Vou=V.uy) - W)dx+ [0 ((V.w) - n) = ((Voup) - n))vds+ [, c(u—up)vdx

Let, define, = u — uy, . Then,

B(u,u —up) — B(uy,v) = — [, ((V.u=V.up) - V(u —up))dx + fan (((V. w:n)—((V.uy)- n)) (u —up)ds +
Jo ctu—up) (u —up)dx

= B(u,u —uy) — B(uy,v) = — fn ((Vu=V.up) - V(u —up))dx + fan (((V. w:n)—((V.uy) - n)) (u —up)ds +
Ji, c(u—up)?dx (12)

The first term of right-hand side of the equation (12) can be written as,
Sy ((Vou=V.up) - V(u —uy)) = Sy ((V.(u—up) - V(u —uy))
= [y V.(u —up)?

Itis known that, [, V.(u —up)? = ||V.(u— uh)llfz(m
From the 2™¢ term of right-hand side of the equation (12),

Jaa (((V' w) - n) = ((V.up) - n)) (u —up)
Using Cauchy-Schwarz’s inequalit,
[(((V.w) - n) = ((V.up) - n))(u —up)| < [[((V-u) - n) = ((V.up) * Dz * lu — up [z

Using Trace inequality,

1((V.w) - n) = ((V.up) - Mlizcy < Cehy? IV (U = up) Iz

- i _ Lt min(k+1,5)-1
< Cthﬂz .Chglm(k+1,s) 1 |u|HS(Q) = ¢, .Chnz min( s) |U-|]-[5(n)

Let, C,- C = C. Then,
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min(k+1,s)—2

I((V-w) - n) = ((V-up) - Mllizy < Chy * |ulnscoy
Now, substituting these values in (12),
B(u — up,u — up) < —[IV. (u — up)llZ g

mirl(k+1,s)—3

+ {Chn ? Julgs- llu —uy ”LZ(Q)} +Cllu- uh”iz(g)
Now,

. 2
V. (u = up)llfzqy < {Ch™OHLD L |u]|ys ) }

— CZ hmin(2k+2,25)—2 ”u”IZ-lS(Q)

=C hmin(2k+2,25)—2 ”u”IZ'IS(Q)

By considering the constant C? as C
y g

And

.
lu = upllizy < Che ™ 972 lullys(q)
Again,

in(k+1,s)-2
llu = up 2y < {Chy "9 72 lull 2} 2
_ min(2Kk+2,2s)—4 2
= CzhQ ||u||Lz(m
_ min(2k+2,2s)—4 2
= Chj llullf2q)

[By considering the constant C? as (]
The last term of right-hand side of the equation (12) can be written as,

Jo cu—up)?dx = cflu —uy ”iz(ﬂ)
Substituting all of these values in (12),

. _ _ in(k+1, _3 . _
B(u-up,u- up) < — ChMn@R+2292) 2 -y {chg““( 7 ull sy CHIIN 1) 2||u||Hs(m}

min(2k+2,2s)—4 2
+ cChp™ 7 ull2q

. _ : _ ~ min(k+1,8)—> _
< {_Chgm(zk+2,2s) 2 + cC hgnn(zk+2,25) 4} ”u”iz(n) + {CCh:m s ZIhglm(k+1,s) 2}”11”21-[5(9)

< Ch ||u||ﬁsm) + Ch1||u||12_,sm)

The constant terms is considered as,

—C+ ¢C = CandCC = C.

So, it can be written as :

llu = up P20y < ChlluliZsgey + ChyllullZseg
By applying proposed DG norm, then

[[u —uy ||52(n) < Chllullie

This completes the proof.

(13)

(14)
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6. Conclusion

The paper investigated the error of the numerical solution by applying the Discontinuous Galerkin finite element method for the first order
parabolic differential equation. It is considered discontinuous Galerkin finite element approximations of a model scalar linear parabolic
equation. It is a different and straightforward approach to seek error analysis from all other finite element schemes which are given in the
literature. The technique used in this paper can also be extended to obtain the L2(€Q) error estimate of the time dependent and higher order
problems with the optimal order of convergence.
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