
International Journal of Basic and Applied Sciences, 1 (4) (2012) 637-650 

©Science Publishing Corporation 

www.sciencepubco.com/index.php/IJBAS 
 

 

 

Nonlinear MHD Flow and Heat Transfer over a Power-

Law Stretching Plate with Free Stream Pressure 

Gradient and Viscous Dissipation in Presence of 

Variable Thermal Diffusivity 

 

M. Thiagarajan
† 
 and  A. S. Sangeetha

†† 
 

 

†Department of Mathematics, PSG College of Arts and Science 

Coimbatore-641 014. INDIA 

Email: thiyagu26@rediffmail.com  

††Department of Mathematics, Park College of Engineering and Technology 

Coimbatore-641 659. INDIA  

Email: sangu.dakshin@gmail.com  

 

Abstract 

The numerical analysis is carried out on steady nonlinear 
magnetohydrodynamic flow and heat transfer over a power-law stretching 
plate with free stream pressure gradient and viscous dissipation in the presence 
of variable thermal diffusivity and variable transverse magnetic field. The 
thermal diffusivity is assumed to vary as linear functions of temperature. 
Using similarity transformation, the nonlinear partial differential equations are 
converted into nonlinear ordinary differential equations. Numerical solutions 
of these equations are obtained with the help of Runge-Kutta shooting method. 
The effects of magnetic field, stretching parameter, Prandtl number, free 
stream velocity ratio, Eckert number and thermal diffusivity parameter on skin 
friction, velocity, rate of heat transfer and temperature are thoroughly 
discussed. It is found that the effect of magnetic field is to decrease the 
velocity and enhance the temperature.   

Keywords: Magnetohydrodynamics, Free stream pressure gradient, Prandtl number, 
Thermal diffusivity, Viscous dissipation. 

 

Nomenclature 

 ( )U x  -  Free stream velocity 

 ( )wU x  - Stretching plate velocity 

 ( )U x   - Composite reference velocity 

    - Boundary layer thickness 

    - Electrical conductivity  
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    - Similarity variable  

    - Stream function 

 ,x y   - Non dimensional Cartesian coordinates  

 u   - Stream wise velocity in x - direction 

 v   - Normal velocity in y - direction 

 ( )p x   - Pressure gradient  

 ( )B x   - Magnetic field  

    - Fluid density  

                     - Dynamic viscosity 

         ( )f    - Dimensionless stream function 

    - Stretching parameter  

    - Free stream velocity ratio 

 M   - Magnetic interaction parameter 

 ( )     - Dimensionless temperature    

 Pr        - Prandtl number  

 E        - Eckert number 

 pc        - Specific heat at constant pressure  

            T         - Temperature of the fluid  

                     - Thermal diffusivity 

            wT        - Temperature at wall 

          T          - Temperature at infinity 

  - Thermal diffusivity parameter 

0  - Thermal diffusivity at the temperature wT .  

 

1 Introduction 

Boundary layer flows on a stretching surface occur in several engineering applications. 

Aerodynamic extrusion of a plastic sheet, the cooling of an infinite metallic plate in a 

cooling bath, condensation processes and geophysical and industrial fields, are examples 

of practical applications. When the effects of the magnetic and fluid forces are considered 

together, the resulting boundary layer equations become intractable for an analytical 

treatment. Idealized models have therefore been investigated in literature with a view to 

understanding the individual as well as coupled effects of the flow parameters Pai [1] and 

Schlichting [2].   

Sakiadis [3, 4] was the first to investigate the boundary layer flow past a moving solid 

surface of a viscous fluid with a constant velocity. Later, the numerical results of Sakiadis 

[3, 4] were confirmed by Tsou, Sparrow and Goldstain [5] analytically and 

experimentally. The steady laminar boundary layer flow over a continuously stretching 

plate was first studied by Crane [6], who obtained an exact solution to the Navier-Stokes 

equations. Many investigators have extended Crane’s work to study flow, heat and/or 

mass transfer under different physical situations. The development of the boundary layer 

due to a stretching permeable sheet was studied by Gupta and Gupta [7], who reported an 

exact solution for the flow field and a solution in incomplete gamma functions for the 
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thermal field. Ali [8] studied the general case when the sheet is stretched with stretching 

velocity of the form 
mx . 

The heat transfer aspect for the problem posed by Crane [6] was studied by Grubka and 

Bobba [9], who reported the solution for the energy equation interms of Kummer’s 

functions. Chen and Char [10] investigated the effects of suction and injection on the heat 

transfer characteristics of a continuous, linearly stretching sheet for both the power-law 

surface temperature and the power-law surface heat flux variations. Recently, the 

similarity solution of magnetohydrodynamic boundary layer driven by the stretching 

surface boundary and pressure gradient, each proportional to the same power-law of the 

downstream coordinate based on composite reference velocity (sum of the velocities of 

stretching boundary and free stream) has been examined by Thiagarajan and Sangeetha 

[11]. 

Most of the previous studies were concerned with magnetohydrodynamic flow. Dandapat, 

Santra and Vajravelu [12] investigated the effect of variable fluid properties and thermo 

capillarity on the flow of a thin film on an unsteady stretching sheet. Chiam [13] 

considered the effect of a variable thermal conductivity on the flow and heat transfer from 

a linearly stretching sheet. Viscous dissipation changes the temperature distributions by 

playing a role like an energy source, which leads to affected heat transfer rates. The merit 

of the effect of viscous dissipation depends on whether the plate is being cooled or 

heated.   

Hence the present study investigates the effect of viscous dissipation and variable thermal 

diffusivity on nonlinear MHD flow over a heated stretching plate with free stream 

pressure gradient. 

 

2 Formulation of the Problem  

Consider the steady two-dimensional laminar boundary layer flow of a viscous 

incompressible electrically conducting fluid over a heated stretching plate with free 

stream pressure gradient in the presence of a transverse variable magnetic field  B x  and 

variable thermal diffusivity. The effect of viscous dissipation is considered. The 

continuity, momentum and energy equations governing such type of flow are written as   

0
u v

x y

 
 

 
                                                                                                                       (1) 

2
2

2
( ) ( )

u u u
u v p x B x u

x y y
  
   

     
   

, 2( ) ( )
dU

p x U B x U
dx

 
 

                   (2)  

2

p

T T T u
c u v

x y y y y
  

         
       

         
                                                                       (3) 

 

The relevant boundary conditions are  

 

( )wu U x  , 0v   , wT T  at 0y   ;   T T  , ( )u U x  as 
y


                         (4) 
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where u  is the stream wise velocity in x -direction and v  is the normal velocity in y -

direction, ( )p x  is the pressure gradient,   is fluid density,   is coefficient of viscosity, 

 is electrical conductivity, pc  is specific heat at constant pressure,   is thermal 

diffusivity, T  is temperature of the fluid and  B x  is the magnetic field, ( )wU x  is the 

stretching plate velocity, ( )U x  is the free stream velocity, wT  is wall temperature and T  

is temperature of the fluid at infinity.  

In writing the above equations, the induced magnetic field is assumed to be negligible. 

Further, the external electrical field is assumed to be zero and the electric field due to 

polarization of charges is also negligible. 

The similarity solution exists if stretching plate velocity ( )wU x   and velocity at the edge 

of boundary layer ( )U x obey the following power-law relations:  

 

0 0,m m

w wU U x U U x                                                                                                  (5) 

 

Utilizing similarity variables based on the composite reference velocity ( )U x  following 

Afzal, Baderuddin and Elgarvi [14] 

 

(1 ) ( )
( , )

2

m U x
x y y

x





                                                                                                    (6) 

2 ( )
( , ) ( )

1

xU x
x y f

m


 


                                                                                                 (7)  

 

and defining  

 

u
y





 ; v
x


 


                                                                                                    (8) 

( ) ( ) ( )wU x U x U x                                                                                                         (9) 

( )
w

T T

T T
  







                                                                                                                 (10) 

 

where   is the similarity variable, ( )f  is the dimensionless stream function and ( )   is 

the dimensionless temperature, the momentum and energy equations can be transformed 

into nonlinear ordinary differential equations. The continuity equation (1) is automatically 

satisfied.  

The variation of thermal diffusivity with the dimensionless temperature is written as  

 

 0 1                                                                                                                     (11) 

 

where   is a parameter which depends on the nature of the fluid, 0  is the value of 

thermal diffusivity at the temperature wT .  
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The special form for magnetic field 
1

2
0( )

m

B x B x


   is chosen to obtain the similarity 

solution.  

Using the relations (5) to (11) in Eqs. (2) to (4), we get 

 
2 2( ) ( ) 0f ff f M f                                                                                      (12) 

   
2 2

1 Pr 0f Ef                                                                                     (13) 

 

The corresponding boundary conditions are  

 

(0) 0, (0) 1 , ( )f f f                                                                                          (14) 

(0) 1, ( ) 0                                                                                                               (15)                                                     

where 
2

0

0 0

2

( )(1 )w

B
M

U U m



 


 

 is the magnetic interaction parameter,  

 

          
2

1

m

m
 


  is the stretching parameter,  

          0

0 0w

U

U U
 






 is the free stream velocity ratio 

         
0

Pr
pc


  is the Prandtl number 

       
2

( )p w

U
E

c T T




 is the Eckert number 

 

and   is the thermal diffusivity parameter. 

Eqs. (12) and (14) for 1   and 0M  are classical Falkner-Skan equations and for 

0   and 0M  are the equations for stretching sheet proposed by Afzal and Varshney 

[15] and Afzal [16, 17]. 

In the absence of magnetic field, equation (12) reduces to that of Afzal [18]. 

 

3 Numerical Solution of the Problem 

Eqs. (12) and (13) subject to boundary conditions (14) and (15) are nonlinear ordinary 

differential equations which constitute the nonlinear boundary value problem and are 

solved numerically using Runge-Kutta shooting method. The crux of the problem is that 

we have to make an initial guess for the values of  0f   and  0  to initiate the 

shooting process. The success of the procedure depends very much on how good this 

guess is. Numerical results are obtained for several values of the physical parameters M , 

 , Pr ,  , E  and  . 
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4 Results and Discussion  

The numerical solutions of nonlinear MHD flow and heat transfer over a power-law 

stretching plate with free stream pressure gradient and viscous dissipation in the presence 

of variable thermal diffusivity has been obtained by Runge-Kutta shooting method by 

fixing several values for the physical parameters. Numerical results are depicted 

graphically by means of figures for dimensionless velocity  f  , dimensionless 

temperature    , skin friction  0f   and the rate of heat transfer  0  for several sets 

of values of magnetic interaction parameter M , stretching parameter  , Prandtl number 

Pr , free stream velocity ratio  , Eckert number E  and thermal diffusivity parameter  .     

Fig. 1 displays the plot of velocity profile ( )f   against   with non-dimensional 

parameter 0 1   for each value of stretching parameter 0.0   to 2.0  when 

0.2M  , 0.01E  , 1.0   and Pr 7.0 . For each value   the velocity profile shows 

gradual variation as velocity ratio   increased from 0 to 1. The gradient ( )f  is positive 

for 
1

2
   and negative for

1

2
  . 

Fig. 2 demonstrates the dimensionless temperature ( )   against   with non-dimensional 

parameter 0 1   for each value of stretching parameter 0.0   to 2.0  when 

0.2M  , 0.01E  , 1.0   and Pr 7.0 . It is observed that as free stream velocity ratio 

  increases, temperature ( )   increases which physically conveys the fact that the effect 

of free stream velocity ratio is to enhance the temperature.  

Fig. 3 represents the influence of magnetic interaction parameter M  over the non-

dimensional velocity ( )f   when 1.0   . It is seen that as magnetic interaction 

parameter M  increases, velocity ( )f   decreases elucidating the fact that the effect of 

magnetic field is to decelerate the velocity. 

Fig. 4 gives the dimensionless temperature for different values of magnetic interaction 

parameter M . It is noticed that for increasing values of magnetic interaction parameter 

M , the temperature ( )   increases which physically conveys the fact that the effect of 

magnetic field is to enhance the temperature. Also it is interesting to see that the boundary 

layer becomes thicker due to the effect of increasing magnetic field.  

Variation in dimensionless velocity ( )f  due to the stretching parameter   is visualized 

through Fig. 5. As the stretching parameter   increases, velocity ( )f   increases 

disclosing the fact that the effect of stretching of the wall is to accelerate the velocity. 

Non-dimensional temperature ( )   for different values of the stretching parameter   is 

presented graphically in Fig. 6. It is seen that the effect of stretching parameter is to 

reduce the temperature, as it increases and also to reduce the thickness of thermomagnetic 

layer.  

The temperature profile     against   for different values of E  is shown in Fig. 7. It is 

noteworthy that the temperature profiles are closer to each other due to the effect of 

Eckert number E .     

The effects of thermal diffusivity parameter   on temperature field is given in Fig. 8. It 

is observed that the fluid temperature increases with the increasing values of  . 



 

 

 

643 M. Thiagarajan
, 
A. S. Sangeetha 

 

For   positive, and 0 1   the numerical solutions (0)f   and (0)  against   with 

parameter 0.0   to 2.0  are illustrated in Figs. 9 to 12. It is noted that the skin friction 

(0)f  and rate of heat transfer (0)  are unique against the free stream velocity ratio . 

Fig. 13 gives clearly the effect of magnetic interaction parameter M  over the skin friction 

(0)f   due to stretching parameter  . The skin friction is increased due to the effect of 

magnetic interaction parameter M  whereas it is enhanced due to the effect of stretching 

parameter  . 

Fig. 14 gives clearly the effect of magnetic interaction parameter M  over the rate of heat 

transfer (0)  due to stretching parameter  . The rate of heat transfer is decreased due to 

the effect of magnetic interaction parameter M  whereas it is suppressed due to the effect 

of stretching parameter   . 

Fig. 15 gives clearly the effect of Prandtl number Pr  over the rate of heat transfer (0)  

due to free stream velocity ratio  . The rate of heat transfer is decreased due to the effect 

of Prandtl number whereas it is enhanced due to the effect of free stream velocity ratio.       

 

5 Conclusion  

 Dimensionless velocity is reduced due to the influence of magnetic field where its 

effect is to increase the stretching parameter.  

 The gradual variation in dimensionless velocity as increasing free stream velocity. 

 The effect of magnetic field is to enhance the temperature. 

 The effect of stretching parameter is to reduce the temperature and also to reduce 

the thickness of thermomagnetic layer. 

 The effect of stretching parameter is increase the skin friction and decrease the 

rate of heat transfer. 

 Skin friction and rate of heat transfer enhance as increasing free stream velocity. 

 The rate of heat transfer is suppressed due to the effect of Prandtl number. 

 Fluid temperature increases with increasing thermal diffusivity parameter. 

 The temperature in the boundary layer slightly increases due to viscous dissipation. 

It is hoped that with the help of our present model, the physics of flow over the 

stretching sheet may be utilized as the basis of many engineering and scientific 

applications. The results derived from the present study may be useful for different 

model investigations.  
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Fig. 1 The velocity distribution ( )f   against   for free stream velocity ratio 0 1   

for 0.0   to 2.0  when 0.2M  . 
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Fig. 2 The temperature distribution ( )   against   for free stream velocity ratio 0 1   

for 0.0   to 2.0  when 0.2M  . 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1



()

Pr = 7.0 , E = 0.01 ,   = 1.0 ,   = 0.0 

 

 

  = 0.0

     0.2

     0.4

     0.5

     0.6

     0.8

     1.0



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1



()

Pr = 7.0 , E = 0.01 ,   = 1.0 ,   = 0.5 

  = 0.0

     0.2

     0.4

     0.5

     0.6

     0.8

     1.0



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1



()

Pr = 7.0 , E = 0.01 ,   = 1.0 ,   = 1.0 

  = 0.0

     0.2

     0.4

     0.5

     0.6

     0.8

     1.0



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1



()

Pr = 7.0 , E = 0.01 ,   = 1.0 ,   = 1.5 

   = 0.0

      0.2

      0.4

      0.5

      0.6

      0.8

      1.0



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Pr = 7.0 , E = 0.01 ,   = 1.0 ,   = 2.0 



()
  = 0.0

     0.2

     0.4

     0.5

     0.6

     0.8

     1.0





 

 

 

647 M. Thiagarajan
, 
A. S. Sangeetha 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The velocity distribution ( )f   

against   for magnetic interaction 

parameter M  when  1.0  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 The temperature distribution ( )   

against   for magnetic interaction 

parameter M  when  1.0  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The velocity distribution ( )f   

against   for stretching parameter   

when 1.0  . 

Fig. 6 The temperature distribution ( )   

against   for stretching parameter   

when 1.0  . 
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Fig. 7 The temperature distribution ( )   against             Fig. 8 The temperature distribution ( )    

for Eckert number E  when 1.0  .              against  for thermal diffusivity parameter    

                  when 1.0  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Skin friction for different  .             Fig. 10 The rate of heat transfer for different  . 
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Fig. 11 Skin friction for different M .         Fig. 12 The rate of heat transfer for different M . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Skin friction against   for different M .               Fig. 14 The rate of heat transfer  

        against   for different M  
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Fig. 15 The rate of heat transfer against   for different Pr . 

 


