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Abstract 
 

The objective of this paper is to indicate a class of new exact solutions of the equations governing the steady plane 

flows of incompressible fluid of variable viscosity. The class consists of the stream function characterized by equation 

(2). Exact solutions are determined for ( ) .g r const  and ( ) .g r const  When ( )f r is arbitrary we can construct an infinite 

set of streamlines and the velocity components, viscosity function, generalized energy function L  and temperature 

distributionT . Therefore, an infinite set of solutions to flow equations. When ( )f r  is not arbitrary, there are two values 

of ( )f r  and therefore, two exact solutions to flow equations. The streamlines are presented through Fig.(1–56) for some 

chosen from of ( )f r . 

 
Keywords: A Class of Exact Solutions; Exact Solutions to the Flow Equations of Incompressible; Variable Viscosity; Navier-Stokes Equations; New 
                 Exact Solutions Variable Viscosity. 
 

1. Introduction 

Due to complex mathematical structure of the fluid flow equations, it is extremely difficult to achieve exact solutions. 

However, researchers have developed methods/techniques through which some exact solutions were determinable. The 

readers interested in these methods/techniques may refer to [1]-[23] and the references therein.  

The aim of this paper is to indicate a class of new exact solutions of the equations describing the steady plane flows of 

incompressible fluid of variable viscosity. The aim is achieved by transforming flows equations into Martin system –

( , )  . In Martin system, the coordinate lines constant  represents streamlines and coordinate lines constant  are left 

arbitrary. We take ( , )r x y   to achieve our aim. When ( )f r is arbitrary an infinite set of velocity components implying 

an infinite set of solutions to flow equation. When ( )f r is not arbitrary there are only two values of ( )f r  indicating a 

set of two solutions. 

The streamlines of the class of flows under consideration are characterized by  

 

( )
const

( )

f r

g r

 


            
(1) 

 

where ( )f r  and ( ) 0g r   are continuously differentiable functions and r ,   the polar coordinates. The equation, with 

loss of generality, implies  

 

( ) ( ) ( )f r g r                (2) 

 

where ( )   is unknown function such that ( ) 0   . 
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The paper is organized as follow: In section (2), we give basic flow equations and transform them into Martin system. 

In section (3), we take ( , )r x y   and transform the equations of section (2) in to a new system of equations. The 

solutions to new system of equations are determined. In section (4) we discuss the solutions of section (3). In section (5) 

we present conclusions. 

2. Basic flow equations 

The basic non-dimensional equations of motion governing a steady plane flow of an incompressible fluid of variable 

viscosity, in the absence of external force with no heat addition are 

 

xu + yv = 0             (3) 

 

u xu + v yu = 
xp +

e

1

R
[(2 ) { ( )} ]x x y x yu u v  

         
(4) 

 

u xv + v yv = yp +
e

1

R
[(2 ) { ( )} ]y y y x xv u v            (5) 

 

u
xT + v yT =

e rR P

xx yyT T
+ c

e

E

R

2 2 2[2 ( ) ( ) ]x y y xu v u v             (6) 

 

where p is the pressure,  is the viscosity, T  is the temperature, u  and v  are velocity components.  

On introducing the vorticity functionw , the total energy function L , the function A  and B defined by 

 

w = 
xv  yu

            
(7) 

 

L = p + 1

2

2 2( )u v 
e

2

R

xu
           (8) 

 

A  = ( )y xu v  , B = 4 xu
          

(9) 

 

The system of equations (3 – 6) can be rewritten as 

 

xu + yv = 0                        (10) 

 

v w = 
xL +

eR

yA

       
                      (11) 

 

u w= L
y

 
Re

B y +
eR

xA

                        
             (12) 

 

u
xT + v yT =

e rR P

xx yyT T
 + c

e

E

4 R

2 2( 4 )B A                                (13) 

 

Now following Martin we introduce the curvilinear coordinate ( , )   in the physical plane in which the coordinate lines 

constant  are the streamlines and the coordinate lines constant  left arbitrary.  

In transforming the flow equations into curvilinear coordinates ( , )  , Martin considered the transformation defined by 

 

( , )x x   and ( , )y y                          (14) 

 

The transformation in (14) defines a system of curvilinear coordinates ( , )   in the physical plane ( , )x y such that the 

Jacobian, J = 
( , )

( , )

x y

 




of the transformation is non-zero and finite. The first fundamental form 2ds in ( , )   system is 

given by 

 
2ds = ( , )E   2d  + 2 ( , )F   d d  + ( , )G   2d                     (15) 
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where 

 

( , )E    = 2x   + 2y  , ( , )F    = x  x + y  y  , ( , )G    = 2x + 2y       
             (16) 

 

Differentiating equation (14) with respect to x  and y , and solving the resulting equations for 
x , y , 

x , y  yield: 

 

x  = J y ,  x =  J y , y  =  J x ,  y = J x      
             (17) 

 

wherein 

 

J  =  2E G F =  ( x  y  y x ) = W                     (18) 

 

If  is the angle between the tangent at the point ( , )P x y  to the coordinate line  =constant and the x-axis, then 

 

tan  = 
y

x



            

             (19) 

 

Equation(17), on utilizing equation (19), gives 

 

x   = E Cos  , x  = 
1

E
[ F Cos   J Sin  ] 

 

y   = E Sin  , y  = 
1

E
 [ F Sin  + J Cos  ]                      (20) 

 

The integrablity conditions 

 

x  = x   y  = y            
             (21) 

 

For x and y , yield  

 

 = 
2

11J

E


 ,  = 

2

12
J

E



           
             (22) 

 

wherein 

 

2

11
 =

1
[ 2 ]

2
2

FE E F E E
W

 
   , 2

12  = 
2

1
[ ]

2
E G F E

W
 

       
             (23) 

 

Equation (19), applying the integrability condition    for ( , )   , yields 

 
2 2

11 121 W W
K

W E E
 

     
     

                

             (24) 

 

where K is called the Gaussian curvature and equation (24) is called Gaussian equation. This equation represents a 

necessary condition that ( , )E   , ( , )F    and ( , )G   are coefficients of the first fundamental form in equation (15). The 

system of equations (10 – 13), on utilizing equations (20 – 24), is transformed into a new system of equations given in 

the following theorem. 

 

Theorem I: 

If the streamlines   =constant and the curves  =constant left arbitrary, generate a curvilinear net in the physical 

plane, the equations (10 – 13), are transformed in to the following system of equations 

 

E
q

W


             
             (25) 
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eR w J E = 
eR J E L +  2 2( ) cos 2 2 sin 2A F J FJ   

  
+ EA  sin2 cos2 )J F 

 
– 2 21

( )sin 2 cos 2
2

B F J FJ  
 

  
 

 

  + E B

21
sin 2 cos

2
F J 

 
 

 
                      (26) 

 

0 = –
eR J L + cos2E A  –  cos2 sin2A F J  

 
+ 21

sin 2 sin
2

B F J  
 

 
 

 – sin 2
2

E B


   
             (27) 

 

1 F E
w

W W W 

    
     

                

             (28) 

 

e r

1

R PJ

G T FT E T FT

J J

  

 

 



    
    
    
       

=  c

e

E

4 R
[ 2B  + 4 2A ] + 

T

J



     
             (29) 

 
2 2

11 121 W W
K

W E E
 

     
     

                

             (30) 

 

wherein   and   are considered as independent variables. This is a system of six equations in seven unknowns E , F ,G

,W , L , T and q . In equations (26 – 29) the functions ( , )A    and ( , )B   are given by  

 

( , )A   =  [
2 5

( cos sin )

4

F J

E J

 
 { 3(2 cos sin )E E J F E    – 2 24 cosE J J   2 sinE E F   + sinE E E  } 

  +
3

cos

2J

 { ( sin cos )E F J   – 2 cosEJ   sinE G  } +
3

( sin cos )

2

F J

EJ

  { ( 2 )J E EJ  sin  

  + cos [ 2 ]FE E F E E     } 
3

sin

2J


{ ( ( sin cos )E J F   – 2 sinEJ  + cosEG  }]               (31) 

 

( , )B   =
3

4

EJ

 [ 2( sin cos )E F J   –2 ( sin cos )E F J  ( sin cos )F J  
 
+ 2 2( sin 2 sin )E J G   ]               (32) 

 

wherein 

 

Cos = 
1

E
,  Sin  =

1E

E



  
2Cos  = 2 E

E

 ,  2Sin  =
2 1E

E



     
             (33) 

3. Exact solutions 

Since our objective is to determine a class of exact solutions to flow equations for which the streamlines are 

characterized by equation (1) and to achieve it we set  

 

( , )r x y                          (34) 

 

where 

 

x rCos , y r Sin                       (35) 

 

Utilizing equations (34) and (35) in equations (25-33), we get  

 

E
q

W


            
             (36) 

 

eR w = eR L – rJA + 1E A + B                                                                                                                                 (37) 

 

0 = – e rR L +
(2 )A E

J

 
+ 1rA E   –

1E B

J



        
            (38) 
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r rJ T 2 1E  rT   + 2( )
E

T
J

   +
2 1

r e r r

E
J R P T

E

 
  

   
 +

2
2 1

r
E EJE E

J J JE

  



  
    

   
T   

 = –  2 24
4

c rJ E P
B A




         
             (39) 

 

w =
2

( ) ( ) 2 ( ) ( )

( ) ( ) ( )

f r f r f r g r

r g r g r g r

    
  

 

1

( ) 

 
 

   
+

2

2

( ) ( ) 2{ ( )}

( ) ( ) ( )

g r g r g r

r g r g r g r

   
  

 

( )

( )

 

 

 
 

 
 

 

+
2

2 2 2

1 { ( )}

( ) ( )

f r

r g r g r

 
 

 
3

( )

{ ( )}

 

 

 
 

   
+

2 3

2 ( ) ( ) ( ) ( )

( ){ ( )}

f r g r

g r

   

 

  


 + 

2 2

2 3

{ ( )} ( ) ( )

( ){ ( )}

g r

g r

   

 

 

    
             (40) 

where 

 

( , )A r  = 
J

 [ 
2 1rJ E

J

 
+

2 1

rE

E 
+

2

(2 )E J

J

 
]                    (41) 

 

( , )B r   = 4
3

1

J
[ J rJ + 1E  J ]                      (42) 

 

E = 1+ 2r  [ ( )f r + ( )g r ( )  ]
2
                      (43) 

 

F = 1J E                          (44) 

 

G  = 2r
2( )g r ( ) 

2
                                                                                                                                                           (45) 

 

W  = J = r ( )g r ( )                         (46) 

 

1E  = ( )r f r + ( )r g r ( )                        (47) 

 

In order to determine the solution of the flow equations we require an equation which the functions f , g ,   and the 

viscosity   must satisfy for the class of flows under consideration and this is obtained by using the integrability 

condition 
r rL L  . The integrability condition, utilizing equations (43) and (46) yields  

 

r rr g A  – 2 ( ) rr f g A   – 
2 21 ( )r f g

A
r g







    


 
+ 

rg A –  ( ) ( )A f g r f g        –
( )

r

f g B
B

g









  
 

 
= 

e rR w         (48) 

 

Once a solution of this equation is determined, the function L  and temperature distribution T are determined from 

equations (37-38) and (39), respectively. 

To determine the exact solutions of equation (48), the presence of term ( )f g    in equation (48) and equation (2) 

suggests to consider the following two cases.  

 

Case I g = Constant                         (49) 

 

Case II g   Constant                                                                                                                                                      (50) 

 

Case I: For the sake of simplicity we take 1g  . On substituting 1g   in equations (36-42), in the absence of body force 

become 

 
21 ( )

( )

rf
q

r 





,                                                                                                                                                                    (51) 

 

w =
( )

( )
f r

f r
r

 
 

 

1

( ) 

 
 

 
+ 2

2

1
{ ( )}f r

r

 
 

 
3

( )

{ ( )}

 

 

 
 

 
,                    (52) 

 

eR w  = eR L  ( ) rr A  + r f A   + B ,                                                                                                                  (53) 
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0 = 
eR rL + 

rr f A + 
2{1 ( ) }rf A

r




 f B


        
             (54) 

 
3( ( ))r  rrT – 2 3( ( ))r  f  rT  + 3( ( ))r   2{1 ( ) }rf  T  

+ 2( ( ))r  { ( )  –
e rR P } rT  

 – 2 3( ( )) ( )r r f    T = 
3

4

c rE P J


[ 2B  + 4 2A ]                    (55) 

 

– ( )r  rrA + 2 r f  ( )  rA +
2{1 ( ) }

( )
rf

A
r

 
 

  
 

 ( )f B    

  + ( )  rB – ( )  rA + ( )  ( )r f   A  = 
rw eR

     
             (56) 

 

where 

 

( , )A r  = 
( )r



 
[ rf f  – 

2

2

(1 ( ) ) ( )

( ( ))

r f

r

 

 

 


],                     (57) 

 

( , )B r   = 
3

4

( ( ))

r

r



 
 [ 2( )  + r f  ( )  ],                     (58) 

 

The above system of equations indicates that its solutions strongly depend on the function ( )   and its derivatives. 

Since ( ) 0   , therefore we consider the following cases 

 

Case I (a) ( ) 0    

 

Case I(b)  ( ) 0    

 

Case I(a): 0    gives 

 

( ) a b                            (59) 

 

where 0a   and b  are real constants. 

Inserting equation (59) in equations (51-58) we get  

 
21 ( )rf

q
a r


 ,                                                                                                                                                                    (60) 

 

eR a L = a r
rA – r f  a A – a B –

 eR r f f

a r

 

       
             (61) 

 

Re rL  = r f  rA + 
2 2(1 )r f

r


νA – f  νB

        
             (62) 

 

a r r rT – 2 a r f  rT + 
2 2(1 )a r f

r


T  

– a ( )r f f  T + ( )e ra R P rT  = 
2 2

c rE P ( 4 )

4

a r B A



 
                 (63) 

 

– r a rrA + 2 a r f  rA + – a rA + a A ( )r f     af B
 + ra B  = 

rw eR
     

             (64) 

 

w  = 
1

( )r f f
a r

 

           
             (65) 

 

where 

 

A  = 
μ

a r
( )r f f                         (66) 

 

B  =
2

4 μ

a r



           
            (67) 



International Journal of Basic and Applied Sciences 435 

 

 

 

 

 

It is obvious from equation (64) that it is difficult to obtain exact solutions. However, we see that on eliminating   

from equations (66) and (67) the function A can be eliminated from equation (64). On eliminating  , we get 

 

A = ( )X r B                         (68) 

 

where 

 

( )X r = 
1

4

 
 
 

2( )r f r f                         (69) 

 

provided 2( ) 0r f r f   . 

 

Inserting equation (68) in equation (64) we get  

 

r ra rX B  – a (1 2 )M X rB + 
 2(1 )a M X M

r

 
B +  2raB rX X   

  – a  2MX M X  B +  a B r X


 = 








 

ra

M
Re

                    (70) 

 

where 

 

( ) ( )M r r f r
           

             (71) 

 

The form of equation (70) suggests to seek a solution of the form 

 

B = ( )S r + ( ) ( )K r  
          

             (72) 

 

where ( )S r and ( )K r are to be determined. 

Substituting equation (72) in equation (70) we get  

 

( )  [ r X ( )K r +( X + 2 r X  ) ( )K r  + ( X  + r X  ) ( )K r ] +[ arX ( )S r  +  2a X r X  ( )S r +  a r X


 ( )S r ]  

   = 
e

M
R

a r


 

 
 

 + a (1 2 )M X ( )K r + a  2MX M X  ( )K r                  (73) 

 

As r and   are independent variables therefore equation (73) provides 

 

r X ( )K r +( X + 2 r X  ) ( )K r  + ( X + r X  ) ( )K r =0                    (74) 

 

and 

 

arX ( )S r  +  2a X r X  ( )S r +  a r X


 ( )S r  = 
1( )Z r

      
             (75) 

 

where 

 

1( )Z r = 
e

M
R

a r


 

 
 

 + a (1 2 )M X ( )K r + a  2MX M X  ( )K r                    (76) 

 

Equation (74) can be rewritten as 

 

[ ( ) ]r X K   =0                          (77) 

 

Equation (77) yields 
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ln

1 2( )
( ) ( )

k r k

K r
X r X r

 

          
             (78) 

 

where
1

k  and 
2

k  are constants. 

Also equation (75) can be rewritten as 

 

[ ( ) ]r X S   = ( )
1

Z r
           

             (79) 

 

Whose solution is 

 

( )S r  =
1

X
 [

1

r
1( )Z r dr ] dr + 3 4lnk r k

X



        
             (80) 

 

where
3k  and 

4k  are constants. 

On substituting equation (78) and equation (80) in equation (72) we get  

 

B = 1

X
 [

1

r
1( )Z r dr ] dr + 3 4lnk r k

X

 + 1 2ln
( )

k r k

X
 

 
 
        

             (81) 

 

The expression for viscosity employing equation (66) or equation (67) is  

 

( , )r  =
2

4

a r
[ 1

X
 [ 1

r
1( )Z r dr ] dr + 3 4lnk r k

X



 
+ 1 2ln

( )
k r k

X
 

 
 
 

]                 (82) 

 

The expression of function L  is determined by finding the solution of equation (61) and (62). The solution, employing 

equations (81) and (68), is 

 

ea R L = –
e

M
R

a r

 
 
 

 +  a r S X

 – ( 1)aK M X    

2

2
a r K X

 
  

    

+  a M S X dr


 +  2(1 )
K

aX M aM dr
r

 
   

 
+ 

1p
      

             (83) 

 

The temperature distribution T is determined from equation (64). Equation (64) utilizing equations (68), (81) and (82) 

becomes  

 

a r r rT – 2 2a r f  rT + 
2 2(1 )a r f

r


T – a ( )r f f  T  

+ ( )e ra R P rT  = 
2

c rE P (1 4 )X

r


{ ( )S r + ( )K r  }               (84) 

 

Right-hand side of equation (84) suggests to seek a solution of the form  

 

1 2( ) ( ) ( )T T r T r   
          

             (85) 

 

On using equation (85) into equation (84), we get 

 

1T  + 
( )e ra R P

a r


1T   = 

2( )Z r
          

             (86) 

 

2T  + 
( )e ra R P

a r


2T   = 

3( )Z r
          

            (87) 

 

where 

 

2( )Z r = 
2

c r

2

E P (1 4 )
( )

X
S r

a r


+2 2a r f  2T + a ( )r f f  2T

      
             (88) 

 

3( )Z r =
2

c r

2

E P (1 4 )
( )

X
K r

a r


                                       (89) 
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It is obvious from equation (86) and (87) that their solutions depend on the value of ( )e ra R P . The solution of equations 

(86) and (87) when ( ) 0e ra R P   is 

 

1( )T r  = 
( ) ( )

2 ( )
e r e ra R P a R P

a ar r Z r dr dr

     
    
      

+ 
3H

( )e ra R P

ar dr

 

 + 
4H

      
             (90) 

 

2( )T r  = 
( ) ( )

3( )
e r e ra R P a R P

a ar r Z r dr dr

     
    
    

+ 
1H

( )e ra R P

ar dr

 

 + 
2H

      
             (91) 

 

Now when ( ) 0e ra R P   the solution of equations (86) and (89) is  

 

1( )T r  = 
2( )Z r drdr   + 

5H r + 
6H
         

             (92) 

 

2( )T r  = 
3( )Z r drdr   + 

7H r + 
8H
         

             (93) 

 

where , 1,2,...8iH i   are constant. 

On eliminating   from (66) and (67), the equation (69) indicates that it is valid only for ( ) 0rf f   . When ( ) 0rf f   , 

the function 0A   and we get 

 

( )f r = 2

1 2

1

2
c r c

           
             (94) 

 

Equation (64) on substituting 0A   

 

1c r νB  – rB  = 0                          (95) 

 

The solution of equation (95) is 

 

B = 1

2

2

1 1 1 3( ) ( )c b r b I r dr c             
             (96) 

 

In above
1 0c  , 2c , 3c and 

1b are constants. The function ( )I r is an unknown function. Utilizing equation (96) in equation 

(67) we get   

 

 =
2

4

a r
[ 3c +

1 ( )b   + 1

2

2

1 1 ( )c b r I r dr  ]                     (97) 

 

The solution of equations (61) and (62), for ( )f r = 2

1 2

1

2
c r c  is 

 

Re L  = (– 1b – 1

2

2 Rec

a
)  – 1

2

2

1 1c b r + 0M
        

             (98) 

 

where 0M  is a real constant 

 

The energy equation (63) employing equations (96) and (97), becomes 

 

a 2r r rT – 2 
1c a 3r rT + 2 4

1(1 )a r c r T – 2
1c a 2r T + r ( )e ra R P rT

 
= 

c rE P  [ 3c +
1 ( )b    + 1

2

2

1 1c b r ( )I r dr ]            (99) 

 

Equation (99) suggests to seek a solution of the form 

 

T  = 3

1 ( )A   + 2

2( ) ( )R r   + 1( ) ( )R r   + 0( )R r
        

           (100) 

 

Equation (99), employing equation (100), provides 

 

a 2r 2R  + r ( )e ra R P 2R   = 2

1 16ac A r
        

           (101) 
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a 2r 1R  + r ( )e ra R P 1R   = 3

1 24ac r R   + 2

1 24ac r R
 
– 2 4

1 16 (1 )a A r c r  +
1 c rb E P

     
           (102) 

 

a 2r 0R  + r ( )e ra R P 0R   = 3

1 12ac r R   + 2

1 12ac r R – 2 4

1 22 (1 )a r c r R
 
+ 2

3 1 1

1
( )

2
c rE P c c b r I r dr

 
   

 
             (103) 

 

When ( ) 0e ra R P  the equations (101-103) give  

 

2( )R r = 
2

1 13

(2 )e r

a A c r

a R P
+ 1

e rR P

a

e r

a n
r

R P
+

2n , (2 ) 0e ra R P 
       

           (104) 

 

1( )R r = 
2 5

1 16

5(5 )e r

a A c r

a R P




16

( )e r

a A r

a R P



+

2 2 4

1 19

(4 )(2 )e r e r

a A c r

a R P a R P 
 
+

2

1 22

(2 )e r

ac r n

a R P
+ 1

e rR P

a

e r

a n
r

R P
 
+

4n – 1 lnc

e

b E r

R
  

+
2 2

1 1 1 3 1 1 32 ( ) (2 )

(2 )

e rR P

a
e r

e r e r

a n r a c r n n R P c r n n

R P a R P

    


,                 (105) 

 

where (2 ) 0e ra R P  , (4 ) 0e ra R P  , (5 ) 0e ra R P    

 

0( )R r = 
6n + 

1( )M r dr           
           (106) 

 

1( )M r =
( )

5

e ra R P

an r

 
 
 

 
+ 

( ) ( )

2

3 1 1

1
( ( ) )

2

e r e ra R P a R P

a a

c rr E P c c b r I r dr r dr

    
   
    

   
 

 

   +  
( ) ( )

2 2 2 4

1 1 1 1 1 22 2 2 (1 )
e r e ra R P a R P

a ar ac r R ac r R ar c r R r dr

    
   
          

           (107) 

 

and 1n ,
2n , 

3n , 
4n ,

5n ,
6n are non-zero constants.  

When ( ) 0e ra R P  , equations (101–103) yield 

 
2

2 1 1 7 8( ) 3R r c A r n r n  
          

           (108) 

 
2

51 1
1

6
( )

20

A c
R r r


 + 2 4

1 13c A r + 3

1 7

4

3
c n r + 2

1 82c n r – 
16 lnA r r +

1 9(6 )A n r – 1 lnc rb E P
r

a
+

10n
    

           (109) 

 

0( )R r  2 11 12( )M r dr dr n r n           
           (110) 

 

where 

 

2( )M r  1 1 1 12 ( ) 2 ( )c r R r c R r  – 2 4

1 2

2
(1 ) ( )c r R r

r


 
+ 21 1

32
( ( ) )

2

c rE P c b
c r I r dr

a r
  

     
           (111) 

 

and 
7n ,

8n 9n ,
10n 11n ,

12n are non-zero constants. 

Case I(b):  

In this case 0   , the equations (57) and (58) can be rewritten as 

 

A =
2r



 
[  2

2
2 1rM M M





 
     

 
]                       (112) 

 

B = 
2

4

r



  2
1 M





  
                 

           (113) 

 

where 

 

M rf                         (114) 

 

Equations (112) and (113) indicate that we can eliminate  from these equations if we set 
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2
1








              
           (115) 

 

Equation (115) gives 

 

4 5

1
ln

( )c c




 
  

              
           (116) 

 

where
4 0c  and 5c  are constants. 

 

On eliminating   from equations (112) and (113), employing (115), we get  

 

B = ( )Y r A                           (117) 

 

where 

 

( )Y r =
2

4( 1 )

2 (1 )

M

rM M M

 

   
, 1M                      (118) 

 

Equation (56) employing equations (115) and (117), become  

 

r rr A – (2 )M Y rA +
2(1 )MY M

A
r



  
 
 
 

+ A
r  

– ( )M Y  A = 
eR

2

2

4

e

c

 
 
 

2

2

(1 )M M

r r


 
 

     
           (119) 

 

Equation (119) suggests to seek solution of the form 

 
2( , ) ( )A C r e D r                        (120) 

 

where the functions ( , )C r   and ( )D r  are to be determined. Substituting equation (120) in equation (119) we get 

 

r
rrC – (2 )M Y rC  + 

2(1 )MY M

r

  
 
 

C + 
rC – ( )M Y  C  

2e  [ r D +2 (2 )M Y D  +4
2(1 )MY M

r

  
 
 

D + D   +2 ( )M Y  D ] 

  = 
eR

2

2

4

e

c

 
 
 

2

2

(1 )M M

r r


 
 

 
                    (121) 

 

Which on equating the coefficients of 2e   gives  

 

r
rrC – (2 )M Y rC  + 

2(1 )MY M

r

  
 
 

C + 
rC – ( )M Y  C =0                 (122) 

 

2r D + r (4 2 1)M Y  D  + 24 4(1 ) 2 ( )MY M r M Y       D  = 
2

4

eR

c

 
 
 

r
2

2

(1 )M M

r r


 
 

     
           (123) 

 

The equation (123) can be reduced to Cauchy equation if we set  

 

(4 2 1)M Y  = 
1m
           

           (124) 

 

and 

 
24 4(1 ) 2 ( )MY M r M Y     = 2m

         
           (125) 

 

The solution of the system of equations (119), (124) and (125) is  

 

1M   , 1m = –11, 2m = 16                     (126) 
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Equation (123), utilizing equation (126), becomes  

 

2r D –11 r D  +16 D = 
2

4

eR

c

 
 
 

2

4

r

 
 
           

           (127) 

 

The solution of equation (127) is  

 

(6 2 5) (6 2 5)

1 2 2 2

4

1
( )

11

eR
D r D r D r

c r

     
     

      
           (128) 

 

where
1D and 

2D are constants. 

Equation (122), utilizing equation (126) becomes 

 
2r rrC +6 r

rC  + 4C + r
rC =0                    (129) 

 

Equation (129) indicates to seek a solution of the form 

 

1 1 2 2( ) ( ) ( ) ( )C C r S C r S   
          

           (130) 

 

Substituting equation (130) in equation (129) 

 

{ r  1rC


 } + 4
1S  +{4

2C 2S  +6 r
2C 

2S  + r  2rC



2S }= 0                 (131) 

 

Differentiating equation (131) with respect to “ r ” we get 

 

 1r rC


 
  

 +4
2C 

2S  +6  2r C



2S  +  2r rC


 

  
2S = 0                  (132) 

 

Differentiating equation (132) with respect to “ ” we obtain 

 

4
2C 

2S  +6 J 2S  +  r J


2S  = 0                    (133) 

 

where 

 

 2( ) ( )J r r C r



           

           (134) 

 

Equation (133) can be written as  

 

4
2C 

Z

Z

 
 
 

+6 J
Z

Z

 
 
 

+  r J

= 0                    (135) 

 

where 

 

2( ) ( )Z S 
           

           (136) 

 

Differentiating equation (134) with respect to “ ” and arranging the terms we obtain 

 

Z

Z

Z

Z


 

 
 


 

 
 

= 3

2


2

( )

( )

J r

C r
= 1d

          
           (137) 

 

where 1d  is a non-zero arbitrary constant. Equation (138) provides 

 

( )J r = 2

3
 1d

2( )C r
          

           (138) 
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1 2Z d Z d Z  
           

           (139) 

 

where
2d  is a constant 

Equation (138) on utilizing equation (134) and integrating once gives 

 

2( )rC r + 2

3
1d

2( )C r =
3d
          

           (140) 

 

where
3d  is a constant. The solution of equation (140) is 

 

2( )C r = 12 /33
4

1

3

2

dd
d r

d




          
           (141) 

 

where
4d  is constant. 

 

On substituting equation (136) in equation (139) and integrating once, we obtain 

 

2( )S   – 1d
2( )S   – 

2d 2( )S  = 
5d
         

           (142) 

 

where
5d  is a constant. Now inserting equation (141) and equation (142) in equation (134), we obtain 

 

2C   {
2S  – 1d

2S  +
2

1

9

d
2S  }= 0                    (143) 

 

As
2( ) 0C r  , equation (143) gives 

 

2S  – 1d
2S  +

2

1

9

d
2S  = 0                     (144) 

 

which can be rewritten as  

 

 2 1 2S d S


  +
2

1

9

d
2S  = 0                     (145) 

 

Employing equation (141) in equation (145), we find 

 
2

1
2

9

d
d  

           
           (146) 

 

Inserting equations (145) and (146) in equation (132), we get 

 

 1r rC


  = – 4
2C 5d +

6d
          

           (147) 

 

whose solution is 

 

1( )C r  = – 4
5d 2 ( )1 C r

dr dr
r r

 
  
 

+
6d

ln r
dr

r
 +

7 lnd r +
8d
       

           (148) 

 

where 5d , 6d , 7d  , and 8d  are constants. 

Now the equations (142), (143) and (146) must satisfy equation (131), and therefore we get 

 

1S = – 3

6

d
  2 1 29 ( ) ( )S d S d d      – 26

8

d
 + 9d  + 11d

       
           (149) 

 

The solution of equation (145) is 
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11
2 12 1 13 1 2

1

9(3 5) (3 5)
( ) [ ] [ ]

6 6

d
S d Exp d d Exp d

d
  

 
  

       
           (150) 

 

which is the solution of equation (143). In above equations
9d , ..,

11d , 
12d  and 

13d  are constants of integration. 

On substituting the values
1( )C r , 

2( )C r , 
1( )S  , 

2( )S   and ( )D r  in equation (120) we get 

 

A  12 /323 5 4 5

2

1 1

3 9
(ln )

dd d d d
r r

d d


  +

6d
2(ln )

2

r
+

7 lnd r +
8d
 
– 3

6

d
  2 1 29 ( ) ( )S d S d d      – 26

8

d
 + 

9d  +
10d  

  +{ 12 /33
4

1

3

2

dd
d r

d


 }{ 11

12 1 13 1 2

1

9(3 5) (3 5)
[ ] [ ]

6 6

d
d Exp d d Exp d

d
 

 
  } 

   
2e  { (6 2 5) (6 2 5)

1 2 2 2

4

1

11

eR
D r D r

c r

     
    

  
}                 (151) 

 

The viscosity distribution from equation (57) or (58) is  

 

 =
2

4

2

r c e 
 
 

[ 12 /323 5 4 5

2

1 1

3 9
(ln )

dd d d d
r r

d d


  +

6d
2(ln )

2

r
+

7 lnd r +
8d
 
– 3

6

d
  2 1 29 ( ) ( )S d S d d      – 26

8

d
 + 

9d  +
10d  

 +{ 12 /33
4

1

3

2

dd
d r

d


 } { 11

12 1 13 1 2

1

9(3 5) (3 5)
[ ] [ ]

6 6

d
d Exp d d Exp d

d
 

 
  } 

2e  { (6 2 5) (6 2 5)

1 2 2 2

4

1

11

eR
D r D r

c r

     
    

  
}]                  (152) 

 

The solution of equations (53-54), utilizing equations (112-113), (116),(126) and (152) is 

 

eR L  = – [
1( )C r 1( )S  2( )C r 2( )S  2 ( )e D r ] – 4

1S  ln r – 4
2S  2C

dr
r


28

D
e dr

r

  +(
7d + 6

9d )   – 263

4

d
 +

4p
 

           (153) 

 

provided 

 

3 0d  , 
5 11d d

           
           (154) 

 

Now for this case the equation for T is  

 

2

r rr T 2r rT +
2

( )T
r

   +
4

1 e r
r

R P
r e T

c

 
 

 
 

 = 
4

10 c rE P

c
[ e  {

6d
2(ln )

2

r
+

7 lnd r +
8d } + e  {– 26

8

d
 + 

9d  +
10d } 

  + e  { 12 /3

4

dd r  }{ 12 1 13 1

(3 5) (3 5)
[ ] [ ]

6 6
d Exp d d Exp d 

 
 } 

   3

2 2

4

1

11

eR
e

c r

    
   

  
+  3 (6 2 5) (6 2 5)

1 2e D r D r  
     

           (155) 

 

It is obvious from the equation (155) that it is extremely difficult to determine the exact solution of equation (155). 

However, we obtained by setting  

 

1 3 4( ) ( ) ( )bT e T r S r S    
          

           (156) 

 

in the temperature equation (155). Inserting equation (156) in equation (155) and arranging the terms we get 

 

2

1 1 1( ) ( ) 2 ( )e r T r rT r T r       
+

4 4 4 4

4

( 1) ( ) 2 ( ) 2 ( ) 1 ( )b b e rR P
r b b S bS S br e S

c

   
  

       
    

32 ( )S  2

1

4

( )e rR P
e rT r

c

   

 = 
4

10 c rE P

c
[ e  { 6d

2(ln )

2

r
+ 7 lnd r + 8d } + e  {– 26

8

d
 + 9d  + 10d } 

  + e  { 12 /3

4

dd r  }{ 12 1 13 1

(3 5) (3 5)
[ ] [ ]

6 6
d Exp d d Exp d 

 
 } 

   3

2 2

4

1

11

eR
e

c r

    
   

  
+  3 (6 2 5) (6 2 5)

1 2e D r D r  
     

           (157) 
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Comparing terms of right-hand side and left-hand side of equation (157) we get 

 

1( )T r = 8

4

5 c rd E P

c
           

           (158) 

 

3( )S  = 
4

5 c rE P

c
(

9d  +
10d ) e                                                                                                                                             (159) 

 

and 

 

4 4 4

4

( ) 2 ( ) 2 ( )e rR P
S S e S

c

   
    

   
= 

4

5 c rE P

c
4d {

(1 5) (1 5)

2 2
12 13d e d e

 
 

 } 3

2

411

eR
e

c

  
  

      
           (160) 

 

provided 

 

1 2 6 7 0D D d d    ,
1 3d  , 2b   ,                    (161) 

 

Solution of equation (159) and (160) is  

 

3( )S  = 
4

5 c rE P

c
9 10( )d d e d  +

1 2s s 
        

           (162) 

 

4( )S  = 1 Gamma[1 2i]BesselJ[ 2 ,2 1 ]
1

C
e i A e

A

  
 
+ 2 Gamma[1 2i]BesselJ[ 2 , 2 1 ]

1

C
e i A e

A

   

 + Gamma[1 2i]Gamma[1 2i]
2

i
e    

 
BesselJ[2 , 2 1 ]i A e 

 
 4 (7 5) /2 (7 5) /24 3 2 BesselJ[ 2 , 2 1 ]e A A e A e i A e d           

  BesselJ[ 2 , 2 1 ]i A e  
   4 (7 5) /2 (7 5) /24 3 2 BesselJ[2 , 2 1 ]e A A e A e i A e d        

  
           (163) 

 

where 

 

4

1 e rR P
A

c
 , 4 12

4

5
2 c rE P d d

A
c

 , 4 13

4

5
3 c rE P d d

A
c

 , 
2

4

4
11

eR
A

c
 

     
           (164) 

 

The solution (163) of equation (160) is obtained using Mathematica. 

We know that equation (118) does not hold for 1M  . To determine the solution we have to use equation (112) and 

(113) which on substituting 1M  , give  

 

0B                         (165) 

 

2

2
A

r









            

           (166) 

 

Equation (56), utilizing equation (165) and 1M   becomes 

 

2

r rr A – 2 r rA + r
rA  = 

eR
2

2

4

e

c

 
 
 

2

4

r

 
 
          

           (167) 

 

Following the previous case 1M  , we seek a solution of the form 

 
2

1( , ) ( )A N r e D r  
          

           (168) 

 

Inserting Equation (168) in equation (167) gives 

 

{ 2

r rr N – 2 r rN  + r
rN }+ 2e  { 2

1 15r D r D  }= eR
2

2

4

e

c

 
 
 

2

4

r

 
 
        

           (169) 
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Which on comparing left hand side and right hand side give 

 

2

1 15r D r D  =
2

4

eR

c

 
 
 

2

4

r

 
 
            

           (170) 

 
2

r rr N – 2 r rN  + r
rN =0                     (171) 

 

The solution of equation of (171) is  

 

14
1 152 2 4

4

41
( ) eR d

D r d
c r r

 
   

            
           (172) 

 

Left- hand side of equation (172) suggest to seek a solution of the form 

 

3 5 4 6( ) ( ) ( ) ( )N C r S C r S   
          

           (173) 

 

which on substituting in equation (171) gives  

 

{ 2

3 3r C rC  }+
6S { 2

4 4r C rC  }–
4 62rC S  =0                   (174) 

 

Differentiating equation (175) with respect to  and rearranging the terms of r and  we get 

 

4 16 4( ) (1 ) ( ) 0rC r d C r   
          

           (175) 

 

16
6 6( ) ( ) 0

2

d
S S   

           
           (176) 

 

where
14d  is a separation constant. Solution of equations (175) and (176) are  

 

1617
4 18

16

( )
dd

C r r d
d

 

           
           (177) 

 

16 /219
6 20

16

2
( )

dd
S d e

d




 

          
           (178) 

 

To obtain the solution of equation (175) we insert equation (176) and (177) in equation (174) and we get 

 
2

3 3r C rC  =
192d 16

17

d
d r

          
           (179) 

 

Solution of equation (179) is  

 

1617 19
3 21 222

16

2
( ) ln

dd d
C r r d r d

d
  

         
           (180) 

 

Substituting equation (177-178) and equation (180) in equation (168), we get 

 

A =
22d 18 19

16

2d d

d
 21 lnd r +

5( )S  16 /2

18 20

d
d d e




 
+ 1617 19

2

16

2 dd d
r

d
16 16 /217 19

20

16 16

2d dd d
r d e

d d

 
  

 
+ 2e  { 14

152 2 4

4

41eR d
d

c r r

 
  

 
}              (181) 

 

The viscosity is obtained from equation (167) by substituting equation (114) and equation (181) which is 

 

( , )r  = 
2

42

r e

c

 
 
 

[ 22d 18 19

16

2d d

d
 21 lnd r + 5( )S  16 /2

18 20

d
d d e




 
+ 1617 19

2

16

2 dd d
r

d
16 16 /217 19

20

16 16

2d dd d
r d e

d d

 
  

 
 

  + 2e  { 14
152 2 4

4

41eR d
d

c r r

 
  

 
}]                                                                                                                 (182) 

 

The solution of equations (61) and (62), utilizing equations (165) and equation (181), is 
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eR L = 2

2 2

4

1
eR e

r c

 
 
 

+ r [
3( )C r  +

4( )C r 6( )S d   
+

2

2

e  
 
 

1( )D r ] – A +
21 222 ln 2d r d 18 19

16

4d d

d
 +

3p
  

           (183) 

 

where
3p  is constant. 

 

The equation (64) of temperature distribution, on substituting equations (165) and equation (181), becomes 

 

2

r rr T 2r rT +
2

( )T
r

   +
4

1 e r
r

R P
r e T

c

 
 

 
 

 = 21

4

2
lnc rE P d

r e
c

 22

4

2 c rE P d
e

c

 +
4

2 c rE P

c
5( )S  e  19 18

4 16

4 c rE P d d
e

c d


16 1
218 20

4

2
d

c rE P d d
e

c


 

 
 

16

16

1
217 20

4 16

2
d

dc rE P d d
r e

c d


 

 
 

 

+
4

2 c rE P

c

3e  { 14
152 2 4

4

41eR d
d

c r r

 
  

 
}                (184) 

 

It is obvious from equation (184) the general solution is extremely difficult to obtain, however the terms in equation 

(184) suggests to seek a solution of the form  

 

2 7 8( ) ( ) ( )bT e T r S r S    
          

           (185) 

 

On substituting equation (185) in equation (184) we get 

 

2

2 2 2( ) 3 ( ) 2 ( )e r T r rT r T r       
2

8 8 8 8

4

2 ( ) 2 ( ) ( ) ( )b e rR P
r S bS b S e bS

c

    
     

 
72 ( )S  2

2

4

( )e rR P
e rT r

c

   

 = 21

4

2
lnc rE P d

e r
c

  
 
 

16 1
219 18 18 20

22 5

4 16 4 4

2 2 2 2
( )

d

c r c r c rE P d d E P E P d d
e d S e

c d c c


 

 
 

  
  

     
   

 

16

16

1
217 20

4 16

2
d

dc rE P d d
r e

c d


 

 
  + 3

2 2

4 4

2 1c r eE P R
e

c c r

   
  

  
 3 14

154

4

2 4c rE P d
e d

c r

  
   

     
           (186) 

 

On comparing the right-hand side and left-hand side, we get  

 

2( )T r =
2

17 20

2

c

e

E d d r

R

 
 
            

           (187) 

 

72 ( )S  = 22

4

2 c rE P d
e

c

 +
4

2 c rE P

c
e 

5( )S  19 18

4 16

4 c rE P d d
e

c d



 

16 1
218 20

4

2
d

c rE P d d
e

c


 

 
 

     
           (188) 

 

and 

 

8 8 8

4

( ) 2 ( ) 2 ( )e rR P
S S e S

c

   
    

 
= 317 20

3

42

c c e r

e

E d d E R P
e e

R c

  

      
           (189) 

 

provided 

 

14 0d  ,  15 0d    16 2d     21 0d  ,  2b                  (190) 

 

Solution of equation (188) is  

 

7 ( )S  = 22 19 18

4 4 16

2c r c rE P d E P d d
e

c c d

 
 

 
+

4

c rE P

c
5( )e S d  

  
218 20

42

c rE P d d
e

c

 + 3 4s s 
    

           (191) 

 

The solution of equation (189) is  
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8( )S  = 
3 5 BesselJ[ 2 , 2 5 ] Gamma[1 2i]C A e i A e     

+ 
4 5 BesselJ[ 2 , 2 5 ] Gamma[1 2i]C A e i A e   

 

 + Gamma[1 2i]Gamma[1 2i]
2

i
e   

 

 2BesselJ[2 , 2 5 ] ( 7 6 )BesselJ[ 2 , 2 5 ]i A e e A A e i A e d         

 2BesselJ[ 2 , 2 5 ] ( 7 6 )BesselJ[2 , 2 5 ]i A e e A A e i A e d        
     

           (192) 

 

where
3C  and 

4C  are constant and  

 

4

5 e rR P
A

c
 , 17 206

2

c

e

E d d
A

R
 , 

3

4

7 c r eE P R
A

c


       
           (193) 

 

Case II:  

For this case ( ) 1g r   and basic flow equations are  

 
21 ( )M N

q
r g





 



           

           (194) 

 

w =
2

( ) ( ) 2 ( ) ( )

( ) ( ) ( )

f r f r f r g r

r g r g r g r

    
  

 

1

( ) 

 
 

   
+

2

2

( ) ( ) 2{ ( )}

( ) ( ) ( )

g r g r g r

r g r g r g r

   
  

 

( )

( )

 

 

 
 

 
 

+
2

2 2 2

1 { ( )}

( ) ( )

f r

r g r g r

 
 

 
3

( )

{ ( )}

 

 

 
 

   
+

2 3

2 ( ) ( ) ( ) ( )

( ){ ( )}

f r g r

g r

   

 

  


 + 

2 2

2 3

{ ( )} ( ) ( )

( ){ ( )}

g r

g r

   

 

 

    
           (195) 

 

eR w =
eR L – ( ) rrg A + ( )M N A  + B                                                                                                               (196) 

 

0 = –
e rR L +

(2 )

( )

A E

rg

 
+ ( )rA M N  –

( )

( )

M N B

rg



       
           (197) 

 

r rr g A  – 2( ) rM N A    – 
2

2
1 ( )

( )
M N

A A
r g

 


 



     


 

 + 
rg A – ( )A M N     –

( )
r

f g B
B

g








  
  
 

= 
e rR w

      
           (198) 

 

( ) r rrg T  2( )M N  rT   +
2

2
1 ( )

( )
( )

M N
T

rg







    


 +
21 ( )

( )
2( )

r e r r

M N
rg R P T

M N






       
 
 

 

 +
 2 ( )

( )
( )

N M N
M N

rg




 
  

  

2 2

2

1 ( ) ( ) 1 ( )

( ) ( )

M N rg M N

rg rg

   

  

               
   

T   

  = –  2 2( )
4

4

c rrg E P
B A








        
           (199) 

 

where 

 

( , )A r  = 
( )rg



 
[ 

2( ) ( )

( )

rrg M N

rg

 
+ ( )M N  

 2

2

(1 ( )M N

rg

 



 



]                (200) 

 

( , )B r   = 
3

4

( )rg



 
[ 2( )rg ( )rrg + ( )M N ( )rg ]                  (201) 

 

( ) ( )M r r f r  and ( ) ( )N r r g r                    (202) 

 

The above system of equations indicates that its solutions strongly depend on the function ( )   and its derivatives. 

Since ( ) 0   , following the Case I, we consider the following cases 

 

Case II(a) ( ) 0    or ( ) a    
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Case II(b) ( ) 0    

 

Case II(a): 

For this case the equations(197-204) becomes 

 
21 ( )M N

q
a rg

 


           
           (203) 

 

w =
2

( ) ( ) 2 ( ) ( )

( ) ( ) ( )

f r f r f r g r

r g r g r g r

    
  

 

1

a

 
 
   

+
2

2

( ) ( ) 2{ ( )}

( ) ( ) ( )

g r g r g r

r g r g r g r

   
  

 

( )

a

  
 
       

           (204) 

 

eR w =
eaR L – ( ) ra rg A + ( )a M N A + a B                                                                                                                   (205) 

 

0 =–
e rR L +

(2 )

( )

A E

rg

 
+ ( )rA M N  –

( )

( )

M N B

rg


                  (206) 

 

r ra rg A – 2 ( ) ra M N A  – 
21 ( )a M N

A
r g



   

 
+ 

ragA – ( )a M N A   –
( )

r

f g B
a B

g





  
 

 
= 

e rR w
  

           (207) 

 

( ) r ra rg T 2 ( )a M N  rT +
21 ( )a M N

T
r g



   

 
+

21 ( )
( )

2( )
r e r r

a M N
a rg R P T

M N





      
 
 

 

 +
 2 ( )

( )
( )

N M N
a M N

rg




 
   

 
 T  = –  2 2( )

4
4

c ra rg E P
B A




     
           (208) 

 

( , )A r  = 
( )a rg


[ 

2( ) 2( )

( ) ( )

r rrg M rg N
M N

rg rg


   
      

   
]                  (209) 

 

( , )B r   = 
2

4

( )

a

a rg


( )rrg

          
           (210) 

 

It is obvious from equation (207), it is extremely difficult to obtain its exact solutions. However, we see that by setting 

0A   or 0B   we can reduce the equation (207) to simple whose solutions are determinable. 

 

For 

 

0A                         (211) 

 

On substituting equations (202) and (209) in equation (211) and comparing the coefficient of  , we get 

 

2( )
( ) 0rrg g
r g

g


  

          
           (212) 

 

2( )
( ) 0rrg f
rf

g


  

          
           (213) 

 

The solution of equation (212) is  

 

                      (214) 

 

Utilizing equation (215) in equation (213) we get  

 
2 2

0 1 0 1( ) (3 ) 0r C r C f C r C f    
         

           (215) 

 

The equation (215) possesses trivial and non-trivial solutions. For trivial solution 

 

)(

1
)(

1

2

0 CrC
rg
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( )f r =0                                                                                                                                                                            (216) 

 

The equation (209), becomes 

 

rB 

g

g


 
 
 

B 

g

g

 
 
 

B = 0

2

4 eR C
g

a




        
           (217) 

 

This suggests to seek a solution of the form  

 
2 ( )B Q r                       (218) 

 

On substituting equation (218) in equation (217) we get 

 

Q  – 2 
g

g

 
 
 

Q = 0

2

2 eR C
g

a




          
           (219) 

 

whose solution is 

 

( )Q r = 0

2

2 eR C
g

a
+ 2

2C g
          

           (220) 

 

On substituting equation (220) in equation (218) we get  

 

B = 2 { 0

2

2 eR C
g

a
+ 2

2C g }                        (221) 

 

Equation (204) gives the value of   

 

 =
2( )

4 ( )

a r g

rg




{ 0

2

2 eR C
g

a
+ 2

2C g } 2                     (222) 

 

Solution of equations (197) and (198) utilizing equation (212) and (213) is  

 

ea R L ={ eR

a


2

2

2

( )

N N

r g rg

 
 

 
– 2 a ( )Q r }

2

2

 
 
 

+
6p
       

           (223) 

 

The energy equation for this is  

 

( ) r ra rg T 2 ( )a rg  rT +
21 ( )a rg

T
r g



  

 
+

21 ( )
( )

2( )
r e r r

a rg
a rg R P T

rg





     
 
 

 

    +
 2 ( )

( )
( )

rg rg
a rg

rg




  
  

 
T = 2 2( ) ( ) ( )c rE P a rg rg g Q r 

   
           (224) 

 

We seek a solution of equation (224) of the form 

 

                     (225) 

 

Inserting equation (225) in (224) we find 

 

2 2ar g R  +  4e rrg ag R P a r g R   +  22 3( ) ( )a rg rg rg R  
 
= ( )c rE P rg g  { 0

2

2 eR C
g

a
+ 2

2C g }              (226) 

 
2 2a r g S +  e rrg ag R P S  = 2 ( )a R r                    (227) 

 

On substituting the value of ( )g r  from equation (214) in equation (226) we get 

 

 

 

)()(),( 2 rSrRrT 
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2 2 2

0 1( )a r C r C R 
 
+  2 2 2 2

0 1 0 1 0 1( ) (9 ) ( )e rr C r C a C r C R P C r C R     + 2 2

0 0 18 (2 )aC r C r C R  

 = – 2

0 1( )c rE P C r C {
2

20 0 1
22 2

2 2e eR C R C C
r C

a a
  }                  (228) 

 

where
0C , 

1C and 
2C are arbitrary constants. Equation (228) suggests that a solution can be determined by setting 

 

1C = 0                          (229) 

 

Equation (228) on substituting 
1C =0, becomes  

 

2a r R +  2

09 e rr a R P C r R  –16a R = –
c rE P {

2

0 2

2 2

0

2 eR C C

a C r
 }                   (230) 

 

The equation suggest to seek a solution of the form 

 

                       (231) 

 

On substituting equation (231) in (230) we get  

 

                     (232) 

 

and 

 

                      (233) 

 

Inserting equation (232) and (233) in equation (231) we get  

 

( )R r = 2

2

1

8 28

c r e r
E P R P C

a a

 
 

 

2

028

c rE P C

aC


2r 

                   (234) 

 

Employing equation (234) in equation (227) we get  

 

( )S r = – 2 2

0C

20

202
3 2 ( )

e r

e r

C R P
r C R Pa r

a
e

r e R r dr dr
r

 
 
  
  

+ 
3C

20

2

e rC R P
r

ae
dr

r



 +
4C
      

           (235) 

 

On substituting equation (234) and (235) in equation (225) we get the temperature distribution. The above solutions are 

when the function 0A  .  

Now when the function B  is zero equation (208) gives 

 

                         (236) 

 

where c  is a non-zero constant. 

Inserting equation (236) in equation (205) we get 

 

1 r ra c A – 2 ( ) ra M g A  – 
21 ( )a M g

A
c



    + 
ra g A
 
+

2( )( )
( )

g M g
aA M g

c





  
    

 
 

 =
2eR M

M
ac r


   

    
  

3

2 eR

a r




           
           (237) 

 

The right hand side suggests seeking a solution of the form  

 

                       (238) 

 

2

21)(  rBBrR











28

1

8

2

21

CP

aa

RPE
B rerc

0

2
2

28 Ca

CPE
B rc



r

c
g 

 )()(),( rPrRrA 
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Equation (237) employing equation (238) become  

 

acR  – 2aMP  + agR +
2gM

a P M
c

 
  

   
+  { ac P  + 3a g P  +

22g
a P g

c

 
  

 
}= 

3

2 eR

a r




    
           (239) 

 

Since   and r independent variables, equation (239) yields  

 

2r P  + 3r P + P =
2

2 eR

a c r


            
           (240) 

 

and 

 

 r R


 = 
2 2

2er R M
M

a c r


   

    
  

+
2rM

P
c

 +
2r M

M P
c r

 
  

           
           (241) 

 

The solution of equations (240) and (241) are  

 

                      (242) 

 

and 

 

= 
1

r
1

1
( )Z r dr dr

r

 
  
 

+
1 lnC r +

2C
         

           (243) 

 

where 

 

1( )Z r = 
2 2

2er R M
M

a c r


   

    
  

+
2rM

P
c

 +
2r M

M P
c r

 
  

          
           (244) 

 

On substituting equation (238) in equation (207) we get the value of   which is  

 

 =  ( ) ( )R r P r 
          

           (245) 

 

where the function  and ( )P r  are given by equations (243) and (232) respectively.  

 

The solution of equation (203) and (204) using equation (236), is  

 

ea R L = 
2

2
( ) ( )

2

eR
acP r a gP r

a r

  
    

  
+{

2 ( )
( )eR M r

M r
ac r

   
    

  
 

 + ( )acR r – ( ) ( )a M r P r } +  21 ( ) ( )
a

M r P r dr
c

 + ( ) ( )M r R r dr  +
5p
     

           (246) 

 

Which gives the generalized energy function L for the case when 0B  .  

The equation (206) for temperature distribution utilizing equation (236) becomes  

 

r racT 2 ( )a M g  rT +
21 ( )a M g

T
c



   

 
+ e r r

ac
R P T

r

 
 

 
 +

2( )
( )

M N
M g

r




 
    

 
aT  

 = – 2( )c rE P RM PM g R P g                                                                                                                         (247) 

 

The right-hand side of equation (247) suggests to seek solution of the form 

 

                    (248) 

 

Inserting equation (248) in equation (247) we get 

 





















r

M
M
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Re 2

 
rca
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r
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s
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)( 
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)(rR
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321 )()()(),(  rRrRrRrT 
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2 [
3acR  + 34agR 

2

32aR g

c


3

2
2 ( )

g
aR g

r
  3e r

ac
R P R

r
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2acR  – 34aMR  +
22ag R  34aR Mg

c


  

 2e r

ac
R P R

r


 
  

 
3 2

2 2
2

M g
a R M R g

r r


     
         

     
] 

+
1acR  22aMR  +

2

32 (1 )aR M

c


+ 1e r

ac
R P R

r

 
 

 
+

2

2
( )

M
a M R

r

 
  

 
 

   = – 2( )c rE P RM PM g R P g               
                         (249) 

 

Equation (249) on comparing the coefficients of 0 , 1  and 2  we get 

 

2

3r R  2

35 e rR P
r r R

ac

 
  

 
34R = 

4( )Z r
         

           (250) 

 

2

2r R 
2

23 e rR P r
r R

ac

 
  

 
2R = 

3( )Z r                      (251) 

 

and 

 

1R  + 1

1 e rR P
R

r ac

 
 

 
= 

2( )Z r                         (252) 

 

where 

 

2( )Z r = 22MR

c


+

2

1 2M
M R

c r

 
  

 
–

2

32

2(1 )M
R

c

 
 
 

– c rE P M R
R

ac



      
           (253) 

 

3( )Z r = 2

34a r M R  2

3

4
2

M
a r R M

r

 
  

 
–  2

c rE P r P M c R 
      

           (254) 

 

4 ( ) ( )c rE P
Z r P r

a




           
           (255) 

 

The solution of equation (252) is  

 

1( )R r =
2 ( )

e r

e r

R P
r R Pac r

ace
r e Z r dr dr

r

 
    
    

 

 
 
  
 
 

+ 
5C

e rR P
r

ac
e

dr
r

 
  
 

 
 
  
 
 

+
6C
      

           (256) 

 

The solutions of equations (250) and (251) using Mathematica is 

 

2( )R r =
3

1
1

1
C

A r

 
  
 

 + 4 MeijerG[{{},{1}},{{ 1, 1},{}}, A1 r]C     

 +
1

r
 1 ( 1 1 )A A r 

1

3MeijerG[{{ },{1}},{{ 1, 1},{}}, A1 r] ( )A re r Z r dr     

 MeijerG[{{ },{1}},{{ 1, 1},{}}, A1 r]r      1

31 1 1 ( )A rA A r e Z r dr
    

           (257) 

 

3( )R r =
 

1 2

1 2 1

2 1 1
C

A r A r

 
  
 
 

 

+ 
2 MeijerG[{{},{1}},{{ 2, 2},{}}, A1 r]C     

+
2

1

r
 2 2 21 (2 4 1 1 )A A r A r 

1 3

4MeijerG[{{ },{1}},{{ 2, 2},{}}, A1 r] ( )A re r Z r dr     

2 MeijerG[{{ },{1}},{{ 2, 2},{}}, A1 r]r      2 2 2 1

41 2 4 1 1 ( )A rA A r A r r e Z r dr  
   

           (258) 

 

where 
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1 e rR P
A

ac


           
           (259) 

 

Using 
1( )R r ,

2( )R r and 
3( )R r  in equation (248) we get temperature distribution. 

 

Case II(b): 

When ( ) 1g r   and ( ) 0    the system of equations (195-200) is extremely difficult to solve in general. However the 

system simplifies into a very simple system if we assume 

 

( ) e                          (260) 

 

On utilizing equation (260) in equations (198) and (199) we get 

 

A =
2 2 2r g




[ 2 2 2 ( )rg N N N N g       2rg M Mg   2(1 )M  ]                (261) 

 

B = 
2 2 2

4

r g




 ( )M g

          
           (262) 

 

where 

 

( ) ( )M r r f r  and ( ) ( )N r r g r                    (263) 

 

On eliminating   from equations (262) and (263) we get  

 

4A

B
=

2
1 0

2

( )

MR
R R

gR

g M g




 
  

  


                                                                                                                                           (264) 

 

where 

 

2( )R r = 2 2 ( )rg N N N N g                        (265) 

 

1( )R r = 2rg M Mg                       (266) 

 

0( )R r = 2(1 )M                        (267) 

 

On setting 

 

0 0R 
            

           (268) 

 

and 

 

2
1 0

MR
R

g

 
  

             
           (269) 

 

We can further simplify equation (264) leading to achieve exact solution. Equation
0 0R  , provides  

 

1M   .                                                                                                                                                                           (270) 

 

When 1M  , we found that the equation (196) admits exact solution. For 1M   , the temperature distribution equation 

is not exactly solvable, therefore this case is discarded. 

 

( ) 1r f r                        (271) 

 

whose solution is  

 

1( ) lnf r r m 
           

           (272) 
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where
1m  is constant. 

 

Now equation (269) utilizing equation (266) and (267) becomes 

 
2 2 0r K r K                          (273) 

 

where 

 

g
K

g

 
  
             

           (274) 

 

The equation (273) admits two solutions. One is particular and another is general. The particular and general solutions 

are 

 

c
g

r


            
           (275) 

 

and 

 
2

2 3

1

2
r m m

g r e


                       (276) 

 

where
2m , 

3m  are constants 

 

Equation (264) employing equation (260) and (269) becomes 

 

B = 
2r

A
c e 



           
           (277) 

 

Inserting equations (274), (275) and (277) in equation (199) we get 

 

r rc A +
22 2

2 r

c r
A

r c





 
   
 

+
2 3

2 2

2 2 2r c
A

c c r r


   
    
   

+ 
2

r

c r
A

r c





 
 

 

2

2 2

2 4c r
A

r r c


 



 
    
 

2 2

4r
A

c 
 =0                    (278) 

 

The variable coefficients of equation (278) suggest to seek solution of the form  

 

( , ) n mA r D r                        (279) 

 

where D is constant. 

Utilizing equation (279) in (278) we find  

 

n mD r  [  2
( 1) 2 ( 1)cn n cn m cm m nc cm

r


      +

1 2 2 ( 1) 2n m m m n

c c c

 
  

   

+  
1

2 2 ( 1) 2n m m m m
r
    + 

2 2 2 2

2 ( 1) 4 4r m m m

c c c

 
   
 

] = 0               (280) 

 

Equation (280) is identically satisfied provided 

 

( 1) 2 ( 1)n n n m m m n m      =0                    (281) 

 

( 1) 0n m m m n                         (282) 

 

( 1)n m m m m   =0                     (283) 

 

( 1) 2 2m m m    =0                     (284) 

 

The solution of equations (281-284) is  
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1, 2m   

 

and 

 

n m   
 

For ( , ) (1, 1)m n   the equation (262) and (279) gives 

 

 =
2

D c 
 
 

2

( )

r

r c





 
 

            
           (285) 

and 

 

A D
r

 
  

             
           (286) 

 

The solution of equation (194) and (195) when ( , ) (1, 1)m n    is  

 

eR L = 
2 2

eR

c 

 
 
 

 – D
r

 
 
 

+ 
7p
         

           (287) 

 

where 
7p  is constant. 

The energy equation is  

 

2( )c r rT 2 1
c

r

 
  

 

2c rT + 2
2 2

2

2
2

c c

r r

  
  

 
T  

+ 
2 2

e r

c
c R P
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2 2 3

2

2c c

r r

  
  
 

T  

 = 
2 3

2
1c rD E P c c c

c r r r

        
        
       

                  (288) 

 

In the light of the coefficient of equation (288) we seek solution of the form  

 
2

0 1 2ln lnT a r b T T T
r r

 


   
       

             
           (289) 

 

Inserting equation (289) in equation (288) we get  

 
4

r

 
 
 

 2 2 2 2 2
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 2 ( ) ( ) 2 ( )e rc b cR P a c b     +  2( )b
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2 c rE P D

c

2 3

1
c c c

r r r

         
        
            

           (290) 

 

Equation (290) on comparing the similar coefficients yields  

 

2 c

r

E D
a

cR
 , c rE P D

b
c
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1 2

2 ( 2)

( )

c r e r

e r

E P D R P
T

R P
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2
c

e

cE D
T
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           (291) 

 

On inserting equation (291) in equation (289) we get 
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2 c

r

E D

cR
ln r c rE P D
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c
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           (292) 
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For )2,2(),( nm  the function A ,   and the generalized pressure distribution L  are  

 
2

( , )A r D
r




 
  

             
           (293) 
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2
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3
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           (294) 

 

eR L =
2 2

eR
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2

2

D
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+
2D
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+ 
2

2
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D
r
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+
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           (295) 

 

The energy equation is  
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r
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2
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c c c
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                  (296) 

 

which on substituting  

 
2 3

0 1 2 3lnT a r T T T T
r r r

       
         

               
           (297) 

 

yields  

 

2
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3
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e

E D
T
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           (298) 

 

Substituting equation (298) in equation (297) we get 

 

T =
2

2 c

e

E D

c R

 
 
 

ln r + 0T +
2

4 8
1

( )

c

e e r e r

E D

cR R P R P
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+
4

1c

e e r

E D

R R P

  
  

  

2

r

 
 
 

+
2

3

c

e

E D

R

 
 
 

3

r

 
 
    

           (299) 

4. Results and discussion 

For the flows under consideration the streamlines are given by 
( )

.
( )

f r
Const

g r

 
 for case I, ( ) 1g r   the streamlines are

( ) .f r Const    When ( )f r  is arbitrary we can construct an infinite set of streamlines and also an infinite set of velocity 

components. This indicates an infinite set of solutions to the flow equations. When ( )f r  is not arbitrary there are two 

values of ( )f r , and therefore, two solutions to flow equations. The streamlines for case I are plotted in Fig. (1–16). The 

Fig. (1–16) shows the effect of different chosen forms of ( )f r .  

For case II when ( ) 0f r  , 
2

0 1

1
( )g r

c r c





 
the streamlines are presented through Fig.(17–25) and the influence of various 

parameters are also indicated. When ( )f r  is non-zero and ( )
c

g r
r

 , we can construct infinite set of velocity components 

and streamlines since ( )f r  is arbitrary. This indicates an infinite set of solutions to flow equations. The Fig. (26–50) 

clearly indicate the effect on streamlines for different forms of ( )f r .  

When ( ) e    there are two values of ( )g r . When ( )
c

g r
r

  the function 
1( ) lnf r r m  . The streamlines for ( )

c
g r

r
  

and 
1( ) lnf r r m   are presented through Fig.(51–56). 

5. Conclusion 

The aim of this paper is to indicate a class of new exact solutions of the equations governing the steady plane flows of 

incompressible fluid of variable viscosity in the absence of external force. To achieve our aim, we first transformed the 

flow equation into Martin system ( , )  , and then setting   defined in equation (34). The exact solutions are determined 
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when ( )f r is arbitrary and ( )f r  is not arbitrary. When ( )f r  is arbitrary an infinite set of velocity component implying an 

infinite solution to flow equations. When ( )f r is not arbitrary, there are solutions of the flow equation. We see that in 

case II ( ) 0f r  , and there is solution and when ( ) 0f r  , we find that ( )f r is arbitrary, and therefore, we can construct an 

infinite set of solutions. The influences of various chosen forms of ( )f r  on the streamlines are also presented. 
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