
 

 

 

 

International Journal of Basic and Applied Sciences, 2 (1) (2013) 81-86 

©Science Publishing Corporation 

www.sciencepubco.com/index.php/IJBAS 

 

 

 

Hawking radiation Schwarzschild black hole in fuzzy space 
 

A. EL Boukili*, M. Nach, M. B. Sedra 

 
Laboratoire des Hautes énergies, Sciences de l'Ingénierie et Réacteurs,  

Université Ibn Tofail, Faculté des Sciences, Département de Physique, 

Kénitra, Morocco 

*Corresponding author E-mail:aelboukili@gmail.com 

 

 

Abstract 

 

Given the importance of Hawking radiation in the areas of black holes, we present in this paper an overview about the 

fuzzy black hole and its thermodynamic properties. We introduce the Hawking radiation of this class of black holes via 

complex path method and we give the possibility to estimate the evaporation time of the Schwarzschild black hole in 

fuzzy space. 
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1 Introduction 

Hawking radiation is a theoretical prediction made by the British physicist Stephen Hawking, which gives the thermal 

properties of the black hole [1]. In 1974, the work of Stephen Hawking on theoretical model clarifies how the black 

hole can radiate black body [2]. However, Hawking radiation can be viewed in different types of black hole namely 

charged rotating black holes [3], Kerr-Newman black hole [4], BTZ black hole [5], Schwarzschild black hole [6], 

Reissner-Nordstrom black hole [7] and AdS Schwarzschild black hole [8]. 

In the same context, the black hole evaporation produces a more consistent view of black hole thermodynamics, by 

showing how black holes interact thermally with the rest of the universe [9]. 

In this paper, we study Hawking radiation and evaporation time of black hole in a fuzzy space [10], such space 

represent another type of non commutative geometry, which appear naturally in the string/M theory. It is also known to 

correspond to the sphere D2-branes in string theory with background linear B-field [11]. Therefore, it is interesting to 

see how the fuzzy space will modify the black hole properties of Schwarzschild Black hole. 

The paper is organized as follows. In Sec. 2, we review the main features of Fuzzy Schwarzschild Black hole. In Sec. 3, 

we study the Hawking radiation of Black hole in fuzzy space via complex path analysis. In Sec. 4, we will gives the 

estimated evaporation time of the geometry of fuzzy black hole. A brief conclusion is reported in Sec. 5. 

 

2 Fuzzy Schwarzschild black hole 

We consider Schwarzschild Black hole in fuzzy space with the Mass density of point particle described by [12] 
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The covariant conservation law  
µ 0T      and the condition of the metric coefficient  1

00 rrg g      for the non 

commutative Schwarzschild like metric, the energy momentum tensor gives by  
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The asymptotic solution of Einstein equation (2), using (1) as the matter source, is the same as replacing the mass of 

Dirac delta function source in Schwarzschild space-time by the effective mass of smeared source 
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The geometry of Fuzzy black hole is described by the line element 
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Where 
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The event horizon of the black hole gives by setting   ,0hrf  the nonzero solution of this equation satisfies 
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This equation cannot be solved in closed form. However, by plotting f(r) one can read intersections with the r-axis and 

determine numerically the existence of horizon(s) and their radii: 

 

  

 
Figure1: Metric function f according to r. We have taken the values ( .h 0 1 and 0010M 0 . ). 

This figure shows that the existence of the Mass M introduces new behavior with respect to the non commutative black 

hole studied by Myung and Yoon [13]. Instead of a single-event horizon, there are different possibilities: (i) We have 

two distinct horizons for ,0MM   (ii) In this case we have one degenerate horizon (external black hole) for ,0MM   

(iii) No horizon for 
0MM  . 

The Hawking temperature is calculated by 
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3 Hawking radiation in fuzzy space 

We consider a (1+1)-dimensional spacetime which has the line element 
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where )(rf  is an arbitrary function of r . We use the method of complex path analysis for examine of the Hawking 

radiation [14]. The function )(rf  vanishes at 0r   and )(' rf  is nonzero at 0r . We expand  )(rf   around the point  0r   

gives 
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For the fuzzy black hole we have 
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with     1

00 2)(


 rMr hR  ,  00 2 rMr h  and 0)( 0 rR . 

The Klein-Gordon equation satisfied by the scalar field is 
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where the operator □ is to be evaluated using metric (9). In the background of (9) the last equation can be written by 
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The semi-classical wave functions satisfying the above are obtained by making the standard ansatz 
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Substituting this ansatz into equation (13) we obtain 
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Expanding  S   in a power series of i/ : 
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Neglecting terms of hight order in  i/ , 0S   gives rise to 
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and the solution is given by 
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here E  is a constant which is identified to energy. To simplify, we take .00 m   The semi-classical propagator  

),,,( 2211 rtrtK   for a particle propagating from a space-time point  ),( 11 rt   to  ),( 22 rt   in the saddle point is given by 

 









 ),,,(exp),,,( 221102211 rtrt

i
rtrt SNK

  

(19) 

 

with  N   is a normalization constant and  0S   is given by 
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Consider an outgoing particle at  01 rrr   , the modulus square of the amplitude for this particle to cross the horizon 

gives the probability of emission of the particle. The contribution to  S0   in the ranges  ),( 01 rr   and  ),( 20 rr    

is real. We take the contour to lie in the upper complex plane and find: 
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Absorption case: 
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with  Emission0S   and  
Absorption0S   are respectively the emission and the absorption function. Taking the modulus 

Square to get the probability gives,  
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So that 

 

Absorption0-Emission0- P
r

P 









)(

4
exp

0R

E

 

(24) 

 

The temperature  
1   the absorption and emission probabilities are related,  
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we obtain the expression of the Hawking temperature of  2D fuzzy Schwarzschild black hole is,  
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4 Black hole evaporation 

The black hole evaporation time produces a more consistent view of black hole thermodynamics, by showing how black 

holes interact thermally with the rest of the universe. In Fuzzy space the Stefan--Boltzmann--Schwarzschild--Hawking 

black hole radiation power law derivation is given by [15] 
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Using the power  P   it is possible to estimate the evaporation time of the geometry of fuzzy black hole as follows 
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here h is the parameter of fuzzy space and skg /m106260755.6 234   is the Planck's constant. From the equation 

(29), we note that the parameter h is involved in the expression of evaporation time as follows: When  ,0h   the 

evaporation time approaches to a standard case of Schwarzschild black hole ( 
2

32644



M
evapt   ), but when  h   the 

evaporation time approaches to 0 strongly. 

 

5 Conclusion 

In this work, we recalled some basic concept of Schwarzschild Black Hole in fuzzy space and their Thermodynamics 

properties. However, a main goal of this paper is to study the Hawking radiation and the evaporation time estimated of 

fuzzy Schwarzschild black hole by using the method of complex paths developed in [14]. 

We have to underline that the relevance of our work can be related also to the importance of the complex paths method. 
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